![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1fi | Structured version Visualization version GIF version |
Description: The degree of a vertex 𝑣 in the induced subgraph 𝑆 of a pseudograph 𝐺 of finite size obtained by removing one vertex 𝑁 plus the number of edges joining the vertex 𝑣 and the vertex 𝑁 is the degree of the vertex 𝑣 in the pseudograph 𝐺. (Contributed by AV, 18-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
vtxdginducedm1.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
Ref | Expression |
---|---|
vtxdginducedm1fi | ⊢ (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdginducedm1.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | vtxdginducedm1.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | vtxdginducedm1.k | . . 3 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
4 | vtxdginducedm1.i | . . 3 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
5 | vtxdginducedm1.p | . . 3 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
6 | vtxdginducedm1.s | . . 3 ⊢ 𝑆 = 〈𝐾, 𝑃〉 | |
7 | vtxdginducedm1.j | . . 3 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
8 | 1, 2, 3, 4, 5, 6, 7 | vtxdginducedm1 29377 | . 2 ⊢ ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) |
9 | 5 | dmeqi 5911 | . . . . . . . . 9 ⊢ dom 𝑃 = dom (𝐸 ↾ 𝐼) |
10 | finresfin 9301 | . . . . . . . . . 10 ⊢ (𝐸 ∈ Fin → (𝐸 ↾ 𝐼) ∈ Fin) | |
11 | dmfi 9362 | . . . . . . . . . 10 ⊢ ((𝐸 ↾ 𝐼) ∈ Fin → dom (𝐸 ↾ 𝐼) ∈ Fin) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝐸 ∈ Fin → dom (𝐸 ↾ 𝐼) ∈ Fin) |
13 | 9, 12 | eqeltrid 2833 | . . . . . . . 8 ⊢ (𝐸 ∈ Fin → dom 𝑃 ∈ Fin) |
14 | 6 | fveq2i 6905 | . . . . . . . . . 10 ⊢ (Vtx‘𝑆) = (Vtx‘〈𝐾, 𝑃〉) |
15 | 1 | fvexi 6916 | . . . . . . . . . . . . 13 ⊢ 𝑉 ∈ V |
16 | 15 | difexi 5334 | . . . . . . . . . . . 12 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
17 | 3, 16 | eqeltri 2825 | . . . . . . . . . . 11 ⊢ 𝐾 ∈ V |
18 | 2 | fvexi 6916 | . . . . . . . . . . . . 13 ⊢ 𝐸 ∈ V |
19 | 18 | resex 6038 | . . . . . . . . . . . 12 ⊢ (𝐸 ↾ 𝐼) ∈ V |
20 | 5, 19 | eqeltri 2825 | . . . . . . . . . . 11 ⊢ 𝑃 ∈ V |
21 | 17, 20 | opvtxfvi 28842 | . . . . . . . . . 10 ⊢ (Vtx‘〈𝐾, 𝑃〉) = 𝐾 |
22 | 14, 21, 3 | 3eqtrri 2761 | . . . . . . . . 9 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
23 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 29373 | . . . . . . . . . 10 ⊢ (iEdg‘𝑆) = 𝑃 |
24 | 23 | eqcomi 2737 | . . . . . . . . 9 ⊢ 𝑃 = (iEdg‘𝑆) |
25 | eqid 2728 | . . . . . . . . 9 ⊢ dom 𝑃 = dom 𝑃 | |
26 | 22, 24, 25 | vtxdgfisnn0 29309 | . . . . . . . 8 ⊢ ((dom 𝑃 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0) |
27 | 13, 26 | sylan 578 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0) |
28 | 27 | nn0red 12571 | . . . . . 6 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℝ) |
29 | dmfi 9362 | . . . . . . . . . . 11 ⊢ (𝐸 ∈ Fin → dom 𝐸 ∈ Fin) | |
30 | rabfi 9300 | . . . . . . . . . . 11 ⊢ (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ∈ Fin) | |
31 | 29, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ∈ Fin) |
32 | 7, 31 | eqeltrid 2833 | . . . . . . . . 9 ⊢ (𝐸 ∈ Fin → 𝐽 ∈ Fin) |
33 | rabfi 9300 | . . . . . . . . 9 ⊢ (𝐽 ∈ Fin → {𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)} ∈ Fin) | |
34 | hashcl 14355 | . . . . . . . . 9 ⊢ ({𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)} ∈ Fin → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℕ0) | |
35 | 32, 33, 34 | 3syl 18 | . . . . . . . 8 ⊢ (𝐸 ∈ Fin → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℕ0) |
36 | 35 | adantr 479 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℕ0) |
37 | 36 | nn0red 12571 | . . . . . 6 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℝ) |
38 | 28, 37 | rexaddd 13253 | . . . . 5 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
39 | 38 | eqeq2d 2739 | . . . 4 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) ↔ ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})))) |
40 | 39 | biimpd 228 | . . 3 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) → ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})))) |
41 | 40 | ralimdva 3164 | . 2 ⊢ (𝐸 ∈ Fin → (∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})))) |
42 | 8, 41 | mpi 20 | 1 ⊢ (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∉ wnel 3043 ∀wral 3058 {crab 3430 Vcvv 3473 ∖ cdif 3946 {csn 4632 〈cop 4638 dom cdm 5682 ↾ cres 5684 ‘cfv 6553 (class class class)co 7426 Fincfn 8970 + caddc 11149 ℕ0cn0 12510 +𝑒 cxad 13130 ♯chash 14329 Vtxcvtx 28829 iEdgciedg 28830 VtxDegcvtxdg 29299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-xadd 13133 df-fz 13525 df-hash 14330 df-vtx 28831 df-iedg 28832 df-vtxdg 29300 |
This theorem is referenced by: finsumvtxdg2ssteplem4 29382 |
Copyright terms: Public domain | W3C validator |