| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdginducedm1fi | Structured version Visualization version GIF version | ||
| Description: The degree of a vertex 𝑣 in the induced subgraph 𝑆 of a pseudograph 𝐺 of finite size obtained by removing one vertex 𝑁 plus the number of edges joining the vertex 𝑣 and the vertex 𝑁 is the degree of the vertex 𝑣 in the pseudograph 𝐺. (Contributed by AV, 18-Dec-2021.) |
| Ref | Expression |
|---|---|
| vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
| vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
| vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
| vtxdginducedm1.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
| Ref | Expression |
|---|---|
| vtxdginducedm1fi | ⊢ (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdginducedm1.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | vtxdginducedm1.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | vtxdginducedm1.k | . . 3 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
| 4 | vtxdginducedm1.i | . . 3 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
| 5 | vtxdginducedm1.p | . . 3 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
| 6 | vtxdginducedm1.s | . . 3 ⊢ 𝑆 = 〈𝐾, 𝑃〉 | |
| 7 | vtxdginducedm1.j | . . 3 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | vtxdginducedm1 29528 | . 2 ⊢ ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) |
| 9 | 5 | dmeqi 5889 | . . . . . . . . 9 ⊢ dom 𝑃 = dom (𝐸 ↾ 𝐼) |
| 10 | finresfin 9281 | . . . . . . . . . 10 ⊢ (𝐸 ∈ Fin → (𝐸 ↾ 𝐼) ∈ Fin) | |
| 11 | dmfi 9352 | . . . . . . . . . 10 ⊢ ((𝐸 ↾ 𝐼) ∈ Fin → dom (𝐸 ↾ 𝐼) ∈ Fin) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝐸 ∈ Fin → dom (𝐸 ↾ 𝐼) ∈ Fin) |
| 13 | 9, 12 | eqeltrid 2839 | . . . . . . . 8 ⊢ (𝐸 ∈ Fin → dom 𝑃 ∈ Fin) |
| 14 | 6 | fveq2i 6884 | . . . . . . . . . 10 ⊢ (Vtx‘𝑆) = (Vtx‘〈𝐾, 𝑃〉) |
| 15 | 1 | fvexi 6895 | . . . . . . . . . . . . 13 ⊢ 𝑉 ∈ V |
| 16 | 15 | difexi 5305 | . . . . . . . . . . . 12 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
| 17 | 3, 16 | eqeltri 2831 | . . . . . . . . . . 11 ⊢ 𝐾 ∈ V |
| 18 | 2 | fvexi 6895 | . . . . . . . . . . . . 13 ⊢ 𝐸 ∈ V |
| 19 | 18 | resex 6021 | . . . . . . . . . . . 12 ⊢ (𝐸 ↾ 𝐼) ∈ V |
| 20 | 5, 19 | eqeltri 2831 | . . . . . . . . . . 11 ⊢ 𝑃 ∈ V |
| 21 | 17, 20 | opvtxfvi 28993 | . . . . . . . . . 10 ⊢ (Vtx‘〈𝐾, 𝑃〉) = 𝐾 |
| 22 | 14, 21, 3 | 3eqtrri 2764 | . . . . . . . . 9 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
| 23 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 29524 | . . . . . . . . . 10 ⊢ (iEdg‘𝑆) = 𝑃 |
| 24 | 23 | eqcomi 2745 | . . . . . . . . 9 ⊢ 𝑃 = (iEdg‘𝑆) |
| 25 | eqid 2736 | . . . . . . . . 9 ⊢ dom 𝑃 = dom 𝑃 | |
| 26 | 22, 24, 25 | vtxdgfisnn0 29460 | . . . . . . . 8 ⊢ ((dom 𝑃 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0) |
| 27 | 13, 26 | sylan 580 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0) |
| 28 | 27 | nn0red 12568 | . . . . . 6 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℝ) |
| 29 | dmfi 9352 | . . . . . . . . . . 11 ⊢ (𝐸 ∈ Fin → dom 𝐸 ∈ Fin) | |
| 30 | rabfi 9280 | . . . . . . . . . . 11 ⊢ (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ∈ Fin) | |
| 31 | 29, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ∈ Fin) |
| 32 | 7, 31 | eqeltrid 2839 | . . . . . . . . 9 ⊢ (𝐸 ∈ Fin → 𝐽 ∈ Fin) |
| 33 | rabfi 9280 | . . . . . . . . 9 ⊢ (𝐽 ∈ Fin → {𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)} ∈ Fin) | |
| 34 | hashcl 14379 | . . . . . . . . 9 ⊢ ({𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)} ∈ Fin → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℕ0) | |
| 35 | 32, 33, 34 | 3syl 18 | . . . . . . . 8 ⊢ (𝐸 ∈ Fin → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℕ0) |
| 36 | 35 | adantr 480 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℕ0) |
| 37 | 36 | nn0red 12568 | . . . . . 6 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℝ) |
| 38 | 28, 37 | rexaddd 13255 | . . . . 5 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
| 39 | 38 | eqeq2d 2747 | . . . 4 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) ↔ ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})))) |
| 40 | 39 | biimpd 229 | . . 3 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) → ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})))) |
| 41 | 40 | ralimdva 3153 | . 2 ⊢ (𝐸 ∈ Fin → (∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})))) |
| 42 | 8, 41 | mpi 20 | 1 ⊢ (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3037 ∀wral 3052 {crab 3420 Vcvv 3464 ∖ cdif 3928 {csn 4606 〈cop 4612 dom cdm 5659 ↾ cres 5661 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 + caddc 11137 ℕ0cn0 12506 +𝑒 cxad 13131 ♯chash 14353 Vtxcvtx 28980 iEdgciedg 28981 VtxDegcvtxdg 29450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-xadd 13134 df-fz 13530 df-hash 14354 df-vtx 28982 df-iedg 28983 df-vtxdg 29451 |
| This theorem is referenced by: finsumvtxdg2ssteplem4 29533 |
| Copyright terms: Public domain | W3C validator |