MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1fi Structured version   Visualization version   GIF version

Theorem vtxdginducedm1fi 29378
Description: The degree of a vertex 𝑣 in the induced subgraph 𝑆 of a pseudograph 𝐺 of finite size obtained by removing one vertex 𝑁 plus the number of edges joining the vertex 𝑣 and the vertex 𝑁 is the degree of the vertex 𝑣 in the pseudograph 𝐺. (Contributed by AV, 18-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
vtxdginducedm1.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
vtxdginducedm1fi (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})))
Distinct variable groups:   𝑖,𝐸   𝑖,𝑁   𝐸,𝑙   𝐽,𝑙   𝑣,𝑙,𝐸
Allowed substitution hints:   𝑃(𝑣,𝑖,𝑙)   𝑆(𝑣,𝑖,𝑙)   𝐺(𝑣,𝑖,𝑙)   𝐼(𝑣,𝑖,𝑙)   𝐽(𝑣,𝑖)   𝐾(𝑣,𝑖,𝑙)   𝑁(𝑣,𝑙)   𝑉(𝑣,𝑖,𝑙)

Proof of Theorem vtxdginducedm1fi
StepHypRef Expression
1 vtxdginducedm1.v . . 3 𝑉 = (Vtx‘𝐺)
2 vtxdginducedm1.e . . 3 𝐸 = (iEdg‘𝐺)
3 vtxdginducedm1.k . . 3 𝐾 = (𝑉 ∖ {𝑁})
4 vtxdginducedm1.i . . 3 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
5 vtxdginducedm1.p . . 3 𝑃 = (𝐸𝐼)
6 vtxdginducedm1.s . . 3 𝑆 = ⟨𝐾, 𝑃
7 vtxdginducedm1.j . . 3 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
81, 2, 3, 4, 5, 6, 7vtxdginducedm1 29377 . 2 𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}))
95dmeqi 5911 . . . . . . . . 9 dom 𝑃 = dom (𝐸𝐼)
10 finresfin 9301 . . . . . . . . . 10 (𝐸 ∈ Fin → (𝐸𝐼) ∈ Fin)
11 dmfi 9362 . . . . . . . . . 10 ((𝐸𝐼) ∈ Fin → dom (𝐸𝐼) ∈ Fin)
1210, 11syl 17 . . . . . . . . 9 (𝐸 ∈ Fin → dom (𝐸𝐼) ∈ Fin)
139, 12eqeltrid 2833 . . . . . . . 8 (𝐸 ∈ Fin → dom 𝑃 ∈ Fin)
146fveq2i 6905 . . . . . . . . . 10 (Vtx‘𝑆) = (Vtx‘⟨𝐾, 𝑃⟩)
151fvexi 6916 . . . . . . . . . . . . 13 𝑉 ∈ V
1615difexi 5334 . . . . . . . . . . . 12 (𝑉 ∖ {𝑁}) ∈ V
173, 16eqeltri 2825 . . . . . . . . . . 11 𝐾 ∈ V
182fvexi 6916 . . . . . . . . . . . . 13 𝐸 ∈ V
1918resex 6038 . . . . . . . . . . . 12 (𝐸𝐼) ∈ V
205, 19eqeltri 2825 . . . . . . . . . . 11 𝑃 ∈ V
2117, 20opvtxfvi 28842 . . . . . . . . . 10 (Vtx‘⟨𝐾, 𝑃⟩) = 𝐾
2214, 21, 33eqtrri 2761 . . . . . . . . 9 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
231, 2, 3, 4, 5, 6vtxdginducedm1lem1 29373 . . . . . . . . . 10 (iEdg‘𝑆) = 𝑃
2423eqcomi 2737 . . . . . . . . 9 𝑃 = (iEdg‘𝑆)
25 eqid 2728 . . . . . . . . 9 dom 𝑃 = dom 𝑃
2622, 24, 25vtxdgfisnn0 29309 . . . . . . . 8 ((dom 𝑃 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0)
2713, 26sylan 578 . . . . . . 7 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0)
2827nn0red 12571 . . . . . 6 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℝ)
29 dmfi 9362 . . . . . . . . . . 11 (𝐸 ∈ Fin → dom 𝐸 ∈ Fin)
30 rabfi 9300 . . . . . . . . . . 11 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
3129, 30syl 17 . . . . . . . . . 10 (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
327, 31eqeltrid 2833 . . . . . . . . 9 (𝐸 ∈ Fin → 𝐽 ∈ Fin)
33 rabfi 9300 . . . . . . . . 9 (𝐽 ∈ Fin → {𝑙𝐽𝑣 ∈ (𝐸𝑙)} ∈ Fin)
34 hashcl 14355 . . . . . . . . 9 ({𝑙𝐽𝑣 ∈ (𝐸𝑙)} ∈ Fin → (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}) ∈ ℕ0)
3532, 33, 343syl 18 . . . . . . . 8 (𝐸 ∈ Fin → (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}) ∈ ℕ0)
3635adantr 479 . . . . . . 7 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}) ∈ ℕ0)
3736nn0red 12571 . . . . . 6 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}) ∈ ℝ)
3828, 37rexaddd 13253 . . . . 5 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})))
3938eqeq2d 2739 . . . 4 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})) ↔ ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}))))
4039biimpd 228 . . 3 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})) → ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}))))
4140ralimdva 3164 . 2 (𝐸 ∈ Fin → (∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}))))
428, 41mpi 20 1 (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wnel 3043  wral 3058  {crab 3430  Vcvv 3473  cdif 3946  {csn 4632  cop 4638  dom cdm 5682  cres 5684  cfv 6553  (class class class)co 7426  Fincfn 8970   + caddc 11149  0cn0 12510   +𝑒 cxad 13130  chash 14329  Vtxcvtx 28829  iEdgciedg 28830  VtxDegcvtxdg 29299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-xadd 13133  df-fz 13525  df-hash 14330  df-vtx 28831  df-iedg 28832  df-vtxdg 29300
This theorem is referenced by:  finsumvtxdg2ssteplem4  29382
  Copyright terms: Public domain W3C validator