MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdginducedm1fi Structured version   Visualization version   GIF version

Theorem vtxdginducedm1fi 29523
Description: The degree of a vertex 𝑣 in the induced subgraph 𝑆 of a pseudograph 𝐺 of finite size obtained by removing one vertex 𝑁 plus the number of edges joining the vertex 𝑣 and the vertex 𝑁 is the degree of the vertex 𝑣 in the pseudograph 𝐺. (Contributed by AV, 18-Dec-2021.)
Hypotheses
Ref Expression
vtxdginducedm1.v 𝑉 = (Vtx‘𝐺)
vtxdginducedm1.e 𝐸 = (iEdg‘𝐺)
vtxdginducedm1.k 𝐾 = (𝑉 ∖ {𝑁})
vtxdginducedm1.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
vtxdginducedm1.p 𝑃 = (𝐸𝐼)
vtxdginducedm1.s 𝑆 = ⟨𝐾, 𝑃
vtxdginducedm1.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
vtxdginducedm1fi (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})))
Distinct variable groups:   𝑖,𝐸   𝑖,𝑁   𝐸,𝑙   𝐽,𝑙   𝑣,𝑙,𝐸
Allowed substitution hints:   𝑃(𝑣,𝑖,𝑙)   𝑆(𝑣,𝑖,𝑙)   𝐺(𝑣,𝑖,𝑙)   𝐼(𝑣,𝑖,𝑙)   𝐽(𝑣,𝑖)   𝐾(𝑣,𝑖,𝑙)   𝑁(𝑣,𝑙)   𝑉(𝑣,𝑖,𝑙)

Proof of Theorem vtxdginducedm1fi
StepHypRef Expression
1 vtxdginducedm1.v . . 3 𝑉 = (Vtx‘𝐺)
2 vtxdginducedm1.e . . 3 𝐸 = (iEdg‘𝐺)
3 vtxdginducedm1.k . . 3 𝐾 = (𝑉 ∖ {𝑁})
4 vtxdginducedm1.i . . 3 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
5 vtxdginducedm1.p . . 3 𝑃 = (𝐸𝐼)
6 vtxdginducedm1.s . . 3 𝑆 = ⟨𝐾, 𝑃
7 vtxdginducedm1.j . . 3 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
81, 2, 3, 4, 5, 6, 7vtxdginducedm1 29522 . 2 𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}))
95dmeqi 5843 . . . . . . . . 9 dom 𝑃 = dom (𝐸𝐼)
10 finresfin 9156 . . . . . . . . . 10 (𝐸 ∈ Fin → (𝐸𝐼) ∈ Fin)
11 dmfi 9219 . . . . . . . . . 10 ((𝐸𝐼) ∈ Fin → dom (𝐸𝐼) ∈ Fin)
1210, 11syl 17 . . . . . . . . 9 (𝐸 ∈ Fin → dom (𝐸𝐼) ∈ Fin)
139, 12eqeltrid 2835 . . . . . . . 8 (𝐸 ∈ Fin → dom 𝑃 ∈ Fin)
146fveq2i 6825 . . . . . . . . . 10 (Vtx‘𝑆) = (Vtx‘⟨𝐾, 𝑃⟩)
151fvexi 6836 . . . . . . . . . . . . 13 𝑉 ∈ V
1615difexi 5266 . . . . . . . . . . . 12 (𝑉 ∖ {𝑁}) ∈ V
173, 16eqeltri 2827 . . . . . . . . . . 11 𝐾 ∈ V
182fvexi 6836 . . . . . . . . . . . . 13 𝐸 ∈ V
1918resex 5977 . . . . . . . . . . . 12 (𝐸𝐼) ∈ V
205, 19eqeltri 2827 . . . . . . . . . . 11 𝑃 ∈ V
2117, 20opvtxfvi 28987 . . . . . . . . . 10 (Vtx‘⟨𝐾, 𝑃⟩) = 𝐾
2214, 21, 33eqtrri 2759 . . . . . . . . 9 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
231, 2, 3, 4, 5, 6vtxdginducedm1lem1 29518 . . . . . . . . . 10 (iEdg‘𝑆) = 𝑃
2423eqcomi 2740 . . . . . . . . 9 𝑃 = (iEdg‘𝑆)
25 eqid 2731 . . . . . . . . 9 dom 𝑃 = dom 𝑃
2622, 24, 25vtxdgfisnn0 29454 . . . . . . . 8 ((dom 𝑃 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0)
2713, 26sylan 580 . . . . . . 7 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0)
2827nn0red 12443 . . . . . 6 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℝ)
29 dmfi 9219 . . . . . . . . . . 11 (𝐸 ∈ Fin → dom 𝐸 ∈ Fin)
30 rabfi 9155 . . . . . . . . . . 11 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
3129, 30syl 17 . . . . . . . . . 10 (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
327, 31eqeltrid 2835 . . . . . . . . 9 (𝐸 ∈ Fin → 𝐽 ∈ Fin)
33 rabfi 9155 . . . . . . . . 9 (𝐽 ∈ Fin → {𝑙𝐽𝑣 ∈ (𝐸𝑙)} ∈ Fin)
34 hashcl 14263 . . . . . . . . 9 ({𝑙𝐽𝑣 ∈ (𝐸𝑙)} ∈ Fin → (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}) ∈ ℕ0)
3532, 33, 343syl 18 . . . . . . . 8 (𝐸 ∈ Fin → (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}) ∈ ℕ0)
3635adantr 480 . . . . . . 7 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}) ∈ ℕ0)
3736nn0red 12443 . . . . . 6 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}) ∈ ℝ)
3828, 37rexaddd 13133 . . . . 5 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})))
3938eqeq2d 2742 . . . 4 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})) ↔ ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}))))
4039biimpd 229 . . 3 ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})) → ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}))))
4140ralimdva 3144 . 2 (𝐸 ∈ Fin → (∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)}))))
428, 41mpi 20 1 (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙𝐽𝑣 ∈ (𝐸𝑙)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wnel 3032  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  {csn 4573  cop 4579  dom cdm 5614  cres 5616  cfv 6481  (class class class)co 7346  Fincfn 8869   + caddc 11009  0cn0 12381   +𝑒 cxad 13009  chash 14237  Vtxcvtx 28974  iEdgciedg 28975  VtxDegcvtxdg 29444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-xadd 13012  df-fz 13408  df-hash 14238  df-vtx 28976  df-iedg 28977  df-vtxdg 29445
This theorem is referenced by:  finsumvtxdg2ssteplem4  29527
  Copyright terms: Public domain W3C validator