Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdginducedm1fi | Structured version Visualization version GIF version |
Description: The degree of a vertex 𝑣 in the induced subgraph 𝑆 of a pseudograph 𝐺 of finite size obtained by removing one vertex 𝑁 plus the number of edges joining the vertex 𝑣 and the vertex 𝑁 is the degree of the vertex 𝑣 in the pseudograph 𝐺. (Contributed by AV, 18-Dec-2021.) |
Ref | Expression |
---|---|
vtxdginducedm1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
vtxdginducedm1.e | ⊢ 𝐸 = (iEdg‘𝐺) |
vtxdginducedm1.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
vtxdginducedm1.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
vtxdginducedm1.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
vtxdginducedm1.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
vtxdginducedm1.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
Ref | Expression |
---|---|
vtxdginducedm1fi | ⊢ (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdginducedm1.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | vtxdginducedm1.e | . . 3 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | vtxdginducedm1.k | . . 3 ⊢ 𝐾 = (𝑉 ∖ {𝑁}) | |
4 | vtxdginducedm1.i | . . 3 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
5 | vtxdginducedm1.p | . . 3 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
6 | vtxdginducedm1.s | . . 3 ⊢ 𝑆 = 〈𝐾, 𝑃〉 | |
7 | vtxdginducedm1.j | . . 3 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
8 | 1, 2, 3, 4, 5, 6, 7 | vtxdginducedm1 27813 | . 2 ⊢ ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) |
9 | 5 | dmeqi 5802 | . . . . . . . . 9 ⊢ dom 𝑃 = dom (𝐸 ↾ 𝐼) |
10 | finresfin 8974 | . . . . . . . . . 10 ⊢ (𝐸 ∈ Fin → (𝐸 ↾ 𝐼) ∈ Fin) | |
11 | dmfi 9027 | . . . . . . . . . 10 ⊢ ((𝐸 ↾ 𝐼) ∈ Fin → dom (𝐸 ↾ 𝐼) ∈ Fin) | |
12 | 10, 11 | syl 17 | . . . . . . . . 9 ⊢ (𝐸 ∈ Fin → dom (𝐸 ↾ 𝐼) ∈ Fin) |
13 | 9, 12 | eqeltrid 2843 | . . . . . . . 8 ⊢ (𝐸 ∈ Fin → dom 𝑃 ∈ Fin) |
14 | 6 | fveq2i 6759 | . . . . . . . . . 10 ⊢ (Vtx‘𝑆) = (Vtx‘〈𝐾, 𝑃〉) |
15 | 1 | fvexi 6770 | . . . . . . . . . . . . 13 ⊢ 𝑉 ∈ V |
16 | 15 | difexi 5247 | . . . . . . . . . . . 12 ⊢ (𝑉 ∖ {𝑁}) ∈ V |
17 | 3, 16 | eqeltri 2835 | . . . . . . . . . . 11 ⊢ 𝐾 ∈ V |
18 | 2 | fvexi 6770 | . . . . . . . . . . . . 13 ⊢ 𝐸 ∈ V |
19 | 18 | resex 5928 | . . . . . . . . . . . 12 ⊢ (𝐸 ↾ 𝐼) ∈ V |
20 | 5, 19 | eqeltri 2835 | . . . . . . . . . . 11 ⊢ 𝑃 ∈ V |
21 | 17, 20 | opvtxfvi 27282 | . . . . . . . . . 10 ⊢ (Vtx‘〈𝐾, 𝑃〉) = 𝐾 |
22 | 14, 21, 3 | 3eqtrri 2771 | . . . . . . . . 9 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
23 | 1, 2, 3, 4, 5, 6 | vtxdginducedm1lem1 27809 | . . . . . . . . . 10 ⊢ (iEdg‘𝑆) = 𝑃 |
24 | 23 | eqcomi 2747 | . . . . . . . . 9 ⊢ 𝑃 = (iEdg‘𝑆) |
25 | eqid 2738 | . . . . . . . . 9 ⊢ dom 𝑃 = dom 𝑃 | |
26 | 22, 24, 25 | vtxdgfisnn0 27745 | . . . . . . . 8 ⊢ ((dom 𝑃 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0) |
27 | 13, 26 | sylan 579 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0) |
28 | 27 | nn0red 12224 | . . . . . 6 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℝ) |
29 | dmfi 9027 | . . . . . . . . . . 11 ⊢ (𝐸 ∈ Fin → dom 𝐸 ∈ Fin) | |
30 | rabfi 8973 | . . . . . . . . . . 11 ⊢ (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ∈ Fin) | |
31 | 29, 30 | syl 17 | . . . . . . . . . 10 ⊢ (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} ∈ Fin) |
32 | 7, 31 | eqeltrid 2843 | . . . . . . . . 9 ⊢ (𝐸 ∈ Fin → 𝐽 ∈ Fin) |
33 | rabfi 8973 | . . . . . . . . 9 ⊢ (𝐽 ∈ Fin → {𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)} ∈ Fin) | |
34 | hashcl 13999 | . . . . . . . . 9 ⊢ ({𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)} ∈ Fin → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℕ0) | |
35 | 32, 33, 34 | 3syl 18 | . . . . . . . 8 ⊢ (𝐸 ∈ Fin → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℕ0) |
36 | 35 | adantr 480 | . . . . . . 7 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℕ0) |
37 | 36 | nn0red 12224 | . . . . . 6 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}) ∈ ℝ) |
38 | 28, 37 | rexaddd 12897 | . . . . 5 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
39 | 38 | eqeq2d 2749 | . . . 4 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) ↔ ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})))) |
40 | 39 | biimpd 228 | . . 3 ⊢ ((𝐸 ∈ Fin ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) → ((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})))) |
41 | 40 | ralimdva 3102 | . 2 ⊢ (𝐸 ∈ Fin → (∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) +𝑒 (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)})))) |
42 | 8, 41 | mpi 20 | 1 ⊢ (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑙 ∈ 𝐽 ∣ 𝑣 ∈ (𝐸‘𝑙)}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 ∀wral 3063 {crab 3067 Vcvv 3422 ∖ cdif 3880 {csn 4558 〈cop 4564 dom cdm 5580 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 + caddc 10805 ℕ0cn0 12163 +𝑒 cxad 12775 ♯chash 13972 Vtxcvtx 27269 iEdgciedg 27270 VtxDegcvtxdg 27735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-xadd 12778 df-fz 13169 df-hash 13973 df-vtx 27271 df-iedg 27272 df-vtxdg 27736 |
This theorem is referenced by: finsumvtxdg2ssteplem4 27818 |
Copyright terms: Public domain | W3C validator |