MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2ssteplem4 Structured version   Visualization version   GIF version

Theorem finsumvtxdg2ssteplem4 29476
Description: Lemma for finsumvtxdg2sstep 29477. (Contributed by AV, 12-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdg2sstep.v 𝑉 = (Vtx‘𝐺)
finsumvtxdg2sstep.e 𝐸 = (iEdg‘𝐺)
finsumvtxdg2sstep.k 𝐾 = (𝑉 ∖ {𝑁})
finsumvtxdg2sstep.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
finsumvtxdg2sstep.p 𝑃 = (𝐸𝐼)
finsumvtxdg2sstep.s 𝑆 = ⟨𝐾, 𝑃
finsumvtxdg2ssteplem.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
finsumvtxdg2ssteplem4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁   𝑣,𝐸   𝑣,𝐺   𝑣,𝑁   𝑖,𝑉,𝑣   𝑖,𝐽   𝑣,𝐾
Allowed substitution hints:   𝑃(𝑣,𝑖)   𝑆(𝑣,𝑖)   𝐼(𝑣,𝑖)   𝐽(𝑣)   𝐾(𝑖)

Proof of Theorem finsumvtxdg2ssteplem4
StepHypRef Expression
1 finsumvtxdg2sstep.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
2 finsumvtxdg2sstep.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
3 finsumvtxdg2sstep.k . . . . . . . 8 𝐾 = (𝑉 ∖ {𝑁})
4 finsumvtxdg2sstep.i . . . . . . . 8 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
5 finsumvtxdg2sstep.p . . . . . . . 8 𝑃 = (𝐸𝐼)
6 finsumvtxdg2sstep.s . . . . . . . 8 𝑆 = ⟨𝐾, 𝑃
7 finsumvtxdg2ssteplem.j . . . . . . . 8 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
81, 2, 3, 4, 5, 6, 7vtxdginducedm1fi 29472 . . . . . . 7 (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
98ad2antll 729 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
109sumeq2d 15667 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})(((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
11 diffi 9139 . . . . . . . 8 (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin)
1211adantr 480 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (𝑉 ∖ {𝑁}) ∈ Fin)
1312adantl 481 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑉 ∖ {𝑁}) ∈ Fin)
145dmeqi 5868 . . . . . . . . 9 dom 𝑃 = dom (𝐸𝐼)
15 finresfin 9215 . . . . . . . . . 10 (𝐸 ∈ Fin → (𝐸𝐼) ∈ Fin)
16 dmfi 9286 . . . . . . . . . 10 ((𝐸𝐼) ∈ Fin → dom (𝐸𝐼) ∈ Fin)
1715, 16syl 17 . . . . . . . . 9 (𝐸 ∈ Fin → dom (𝐸𝐼) ∈ Fin)
1814, 17eqeltrid 2832 . . . . . . . 8 (𝐸 ∈ Fin → dom 𝑃 ∈ Fin)
1918ad2antll 729 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → dom 𝑃 ∈ Fin)
203eqcomi 2738 . . . . . . . . 9 (𝑉 ∖ {𝑁}) = 𝐾
2120eleq2i 2820 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ 𝑣𝐾)
2221biimpi 216 . . . . . . 7 (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣𝐾)
236fveq2i 6861 . . . . . . . . . 10 (Vtx‘𝑆) = (Vtx‘⟨𝐾, 𝑃⟩)
241fvexi 6872 . . . . . . . . . . . . 13 𝑉 ∈ V
2524difexi 5285 . . . . . . . . . . . 12 (𝑉 ∖ {𝑁}) ∈ V
263, 25eqeltri 2824 . . . . . . . . . . 11 𝐾 ∈ V
272fvexi 6872 . . . . . . . . . . . . 13 𝐸 ∈ V
2827resex 6000 . . . . . . . . . . . 12 (𝐸𝐼) ∈ V
295, 28eqeltri 2824 . . . . . . . . . . 11 𝑃 ∈ V
3026, 29opvtxfvi 28936 . . . . . . . . . 10 (Vtx‘⟨𝐾, 𝑃⟩) = 𝐾
3123, 30eqtr2i 2753 . . . . . . . . 9 𝐾 = (Vtx‘𝑆)
321, 2, 3, 4, 5, 6vtxdginducedm1lem1 29467 . . . . . . . . . 10 (iEdg‘𝑆) = 𝑃
3332eqcomi 2738 . . . . . . . . 9 𝑃 = (iEdg‘𝑆)
34 eqid 2729 . . . . . . . . 9 dom 𝑃 = dom 𝑃
3531, 33, 34vtxdgfisnn0 29403 . . . . . . . 8 ((dom 𝑃 ∈ Fin ∧ 𝑣𝐾) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0)
3635nn0cnd 12505 . . . . . . 7 ((dom 𝑃 ∈ Fin ∧ 𝑣𝐾) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℂ)
3719, 22, 36syl2an 596 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℂ)
38 dmfi 9286 . . . . . . . . . . . 12 (𝐸 ∈ Fin → dom 𝐸 ∈ Fin)
39 rabfi 9214 . . . . . . . . . . . 12 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
4038, 39syl 17 . . . . . . . . . . 11 (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
417, 40eqeltrid 2832 . . . . . . . . . 10 (𝐸 ∈ Fin → 𝐽 ∈ Fin)
42 rabfi 9214 . . . . . . . . . 10 (𝐽 ∈ Fin → {𝑖𝐽𝑣 ∈ (𝐸𝑖)} ∈ Fin)
43 hashcl 14321 . . . . . . . . . 10 ({𝑖𝐽𝑣 ∈ (𝐸𝑖)} ∈ Fin → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℕ0)
4441, 42, 433syl 18 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℕ0)
4544nn0cnd 12505 . . . . . . . 8 (𝐸 ∈ Fin → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
4645ad2antll 729 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
4746adantr 480 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
4813, 37, 47fsumadd 15706 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
4910, 48eqtrd 2764 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
503sumeq1i 15663 . . . . . 6 Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣)
5150eqeq1i 2734 . . . . 5 𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) ↔ Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)))
52 oveq1 7394 . . . . 5 𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) = ((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
5351, 52sylbi 217 . . . 4 𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) = ((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
5449, 53sylan9eq 2784 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = ((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
5554oveq1d 7402 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
5645adantl 481 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
5756adantr 480 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
5812, 57fsumcl 15699 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
59 hashcl 14321 . . . . . . . . . . 11 (𝐽 ∈ Fin → (♯‘𝐽) ∈ ℕ0)
6041, 59syl 17 . . . . . . . . . 10 (𝐸 ∈ Fin → (♯‘𝐽) ∈ ℕ0)
6160nn0cnd 12505 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘𝐽) ∈ ℂ)
6261adantl 481 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (♯‘𝐽) ∈ ℂ)
63 rabfi 9214 . . . . . . . . . . 11 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin)
64 hashcl 14321 . . . . . . . . . . 11 ({𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℕ0)
6538, 63, 643syl 18 . . . . . . . . . 10 (𝐸 ∈ Fin → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℕ0)
6665nn0cnd 12505 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℂ)
6766adantl 481 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℂ)
6858, 62, 67add12d 11401 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((♯‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
6968adantl 481 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((♯‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
701, 2, 3, 4, 5, 6, 7finsumvtxdg2ssteplem3 29475 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (♯‘𝐽))
7170oveq2d 7403 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((♯‘𝐽) + (♯‘𝐽)))
72612timesd 12425 . . . . . . . 8 (𝐸 ∈ Fin → (2 · (♯‘𝐽)) = ((♯‘𝐽) + (♯‘𝐽)))
7372eqcomd 2735 . . . . . . 7 (𝐸 ∈ Fin → ((♯‘𝐽) + (♯‘𝐽)) = (2 · (♯‘𝐽)))
7473ad2antll 729 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘𝐽) + (♯‘𝐽)) = (2 · (♯‘𝐽)))
7569, 71, 743eqtrd 2768 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · (♯‘𝐽)))
7675oveq2d 7403 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((2 · (♯‘𝑃)) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))) = ((2 · (♯‘𝑃)) + (2 · (♯‘𝐽))))
77 2cnd 12264 . . . . . . 7 (𝐸 ∈ Fin → 2 ∈ ℂ)
785, 15eqeltrid 2832 . . . . . . . . 9 (𝐸 ∈ Fin → 𝑃 ∈ Fin)
79 hashcl 14321 . . . . . . . . 9 (𝑃 ∈ Fin → (♯‘𝑃) ∈ ℕ0)
8078, 79syl 17 . . . . . . . 8 (𝐸 ∈ Fin → (♯‘𝑃) ∈ ℕ0)
8180nn0cnd 12505 . . . . . . 7 (𝐸 ∈ Fin → (♯‘𝑃) ∈ ℂ)
8277, 81mulcld 11194 . . . . . 6 (𝐸 ∈ Fin → (2 · (♯‘𝑃)) ∈ ℂ)
8382ad2antll 729 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 · (♯‘𝑃)) ∈ ℂ)
8458adantl 481 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
8561, 66addcld 11193 . . . . . 6 (𝐸 ∈ Fin → ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) ∈ ℂ)
8685ad2antll 729 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) ∈ ℂ)
8783, 84, 86addassd 11196 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((2 · (♯‘𝑃)) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))))
88 2cnd 12264 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 2 ∈ ℂ)
8981ad2antll 729 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝑃) ∈ ℂ)
9061ad2antll 729 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐽) ∈ ℂ)
9188, 89, 90adddid 11198 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 · ((♯‘𝑃) + (♯‘𝐽))) = ((2 · (♯‘𝑃)) + (2 · (♯‘𝐽))))
9276, 87, 913eqtr4d 2774 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
9392adantr 480 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
9455, 93eqtrd 2764 1 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnel 3029  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  {csn 4589  cop 4595  dom cdm 5638  cres 5640  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066   + caddc 11071   · cmul 11073  2c2 12241  0cn0 12442  chash 14295  Σcsu 15652  Vtxcvtx 28923  iEdgciedg 28924  UPGraphcupgr 29007  VtxDegcvtxdg 29393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-xadd 13073  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-vtx 28925  df-iedg 28926  df-edg 28975  df-uhgr 28985  df-upgr 29009  df-vtxdg 29394
This theorem is referenced by:  finsumvtxdg2sstep  29477
  Copyright terms: Public domain W3C validator