MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2ssteplem4 Structured version   Visualization version   GIF version

Theorem finsumvtxdg2ssteplem4 27330
Description: Lemma for finsumvtxdg2sstep 27331. (Contributed by AV, 12-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdg2sstep.v 𝑉 = (Vtx‘𝐺)
finsumvtxdg2sstep.e 𝐸 = (iEdg‘𝐺)
finsumvtxdg2sstep.k 𝐾 = (𝑉 ∖ {𝑁})
finsumvtxdg2sstep.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
finsumvtxdg2sstep.p 𝑃 = (𝐸𝐼)
finsumvtxdg2sstep.s 𝑆 = ⟨𝐾, 𝑃
finsumvtxdg2ssteplem.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
finsumvtxdg2ssteplem4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁   𝑣,𝐸   𝑣,𝐺   𝑣,𝑁   𝑖,𝑉,𝑣   𝑖,𝐽   𝑣,𝐾
Allowed substitution hints:   𝑃(𝑣,𝑖)   𝑆(𝑣,𝑖)   𝐼(𝑣,𝑖)   𝐽(𝑣)   𝐾(𝑖)

Proof of Theorem finsumvtxdg2ssteplem4
StepHypRef Expression
1 finsumvtxdg2sstep.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
2 finsumvtxdg2sstep.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
3 finsumvtxdg2sstep.k . . . . . . . 8 𝐾 = (𝑉 ∖ {𝑁})
4 finsumvtxdg2sstep.i . . . . . . . 8 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
5 finsumvtxdg2sstep.p . . . . . . . 8 𝑃 = (𝐸𝐼)
6 finsumvtxdg2sstep.s . . . . . . . 8 𝑆 = ⟨𝐾, 𝑃
7 finsumvtxdg2ssteplem.j . . . . . . . 8 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
81, 2, 3, 4, 5, 6, 7vtxdginducedm1fi 27326 . . . . . . 7 (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
98ad2antll 727 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
109sumeq2d 15059 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})(((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
11 diffi 8750 . . . . . . . 8 (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin)
1211adantr 483 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (𝑉 ∖ {𝑁}) ∈ Fin)
1312adantl 484 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑉 ∖ {𝑁}) ∈ Fin)
145dmeqi 5773 . . . . . . . . 9 dom 𝑃 = dom (𝐸𝐼)
15 finresfin 8744 . . . . . . . . . 10 (𝐸 ∈ Fin → (𝐸𝐼) ∈ Fin)
16 dmfi 8802 . . . . . . . . . 10 ((𝐸𝐼) ∈ Fin → dom (𝐸𝐼) ∈ Fin)
1715, 16syl 17 . . . . . . . . 9 (𝐸 ∈ Fin → dom (𝐸𝐼) ∈ Fin)
1814, 17eqeltrid 2917 . . . . . . . 8 (𝐸 ∈ Fin → dom 𝑃 ∈ Fin)
1918ad2antll 727 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → dom 𝑃 ∈ Fin)
203eqcomi 2830 . . . . . . . . 9 (𝑉 ∖ {𝑁}) = 𝐾
2120eleq2i 2904 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ 𝑣𝐾)
2221biimpi 218 . . . . . . 7 (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣𝐾)
236fveq2i 6673 . . . . . . . . . 10 (Vtx‘𝑆) = (Vtx‘⟨𝐾, 𝑃⟩)
241fvexi 6684 . . . . . . . . . . . . 13 𝑉 ∈ V
2524difexi 5232 . . . . . . . . . . . 12 (𝑉 ∖ {𝑁}) ∈ V
263, 25eqeltri 2909 . . . . . . . . . . 11 𝐾 ∈ V
272fvexi 6684 . . . . . . . . . . . . 13 𝐸 ∈ V
2827resex 5899 . . . . . . . . . . . 12 (𝐸𝐼) ∈ V
295, 28eqeltri 2909 . . . . . . . . . . 11 𝑃 ∈ V
3026, 29opvtxfvi 26794 . . . . . . . . . 10 (Vtx‘⟨𝐾, 𝑃⟩) = 𝐾
3123, 30eqtr2i 2845 . . . . . . . . 9 𝐾 = (Vtx‘𝑆)
321, 2, 3, 4, 5, 6vtxdginducedm1lem1 27321 . . . . . . . . . 10 (iEdg‘𝑆) = 𝑃
3332eqcomi 2830 . . . . . . . . 9 𝑃 = (iEdg‘𝑆)
34 eqid 2821 . . . . . . . . 9 dom 𝑃 = dom 𝑃
3531, 33, 34vtxdgfisnn0 27257 . . . . . . . 8 ((dom 𝑃 ∈ Fin ∧ 𝑣𝐾) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0)
3635nn0cnd 11958 . . . . . . 7 ((dom 𝑃 ∈ Fin ∧ 𝑣𝐾) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℂ)
3719, 22, 36syl2an 597 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℂ)
38 dmfi 8802 . . . . . . . . . . . 12 (𝐸 ∈ Fin → dom 𝐸 ∈ Fin)
39 rabfi 8743 . . . . . . . . . . . 12 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
4038, 39syl 17 . . . . . . . . . . 11 (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
417, 40eqeltrid 2917 . . . . . . . . . 10 (𝐸 ∈ Fin → 𝐽 ∈ Fin)
42 rabfi 8743 . . . . . . . . . 10 (𝐽 ∈ Fin → {𝑖𝐽𝑣 ∈ (𝐸𝑖)} ∈ Fin)
43 hashcl 13718 . . . . . . . . . 10 ({𝑖𝐽𝑣 ∈ (𝐸𝑖)} ∈ Fin → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℕ0)
4441, 42, 433syl 18 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℕ0)
4544nn0cnd 11958 . . . . . . . 8 (𝐸 ∈ Fin → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
4645ad2antll 727 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
4746adantr 483 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
4813, 37, 47fsumadd 15096 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
4910, 48eqtrd 2856 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
503sumeq1i 15055 . . . . . 6 Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣)
5150eqeq1i 2826 . . . . 5 𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) ↔ Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)))
52 oveq1 7163 . . . . 5 𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) = ((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
5351, 52sylbi 219 . . . 4 𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) = ((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
5449, 53sylan9eq 2876 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = ((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
5554oveq1d 7171 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
5645adantl 484 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
5756adantr 483 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
5812, 57fsumcl 15090 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
59 hashcl 13718 . . . . . . . . . . 11 (𝐽 ∈ Fin → (♯‘𝐽) ∈ ℕ0)
6041, 59syl 17 . . . . . . . . . 10 (𝐸 ∈ Fin → (♯‘𝐽) ∈ ℕ0)
6160nn0cnd 11958 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘𝐽) ∈ ℂ)
6261adantl 484 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (♯‘𝐽) ∈ ℂ)
63 rabfi 8743 . . . . . . . . . . 11 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin)
64 hashcl 13718 . . . . . . . . . . 11 ({𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℕ0)
6538, 63, 643syl 18 . . . . . . . . . 10 (𝐸 ∈ Fin → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℕ0)
6665nn0cnd 11958 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℂ)
6766adantl 484 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℂ)
6858, 62, 67add12d 10866 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((♯‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
6968adantl 484 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((♯‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
701, 2, 3, 4, 5, 6, 7finsumvtxdg2ssteplem3 27329 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (♯‘𝐽))
7170oveq2d 7172 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((♯‘𝐽) + (♯‘𝐽)))
72612timesd 11881 . . . . . . . 8 (𝐸 ∈ Fin → (2 · (♯‘𝐽)) = ((♯‘𝐽) + (♯‘𝐽)))
7372eqcomd 2827 . . . . . . 7 (𝐸 ∈ Fin → ((♯‘𝐽) + (♯‘𝐽)) = (2 · (♯‘𝐽)))
7473ad2antll 727 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘𝐽) + (♯‘𝐽)) = (2 · (♯‘𝐽)))
7569, 71, 743eqtrd 2860 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · (♯‘𝐽)))
7675oveq2d 7172 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((2 · (♯‘𝑃)) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))) = ((2 · (♯‘𝑃)) + (2 · (♯‘𝐽))))
77 2cnd 11716 . . . . . . 7 (𝐸 ∈ Fin → 2 ∈ ℂ)
785, 15eqeltrid 2917 . . . . . . . . 9 (𝐸 ∈ Fin → 𝑃 ∈ Fin)
79 hashcl 13718 . . . . . . . . 9 (𝑃 ∈ Fin → (♯‘𝑃) ∈ ℕ0)
8078, 79syl 17 . . . . . . . 8 (𝐸 ∈ Fin → (♯‘𝑃) ∈ ℕ0)
8180nn0cnd 11958 . . . . . . 7 (𝐸 ∈ Fin → (♯‘𝑃) ∈ ℂ)
8277, 81mulcld 10661 . . . . . 6 (𝐸 ∈ Fin → (2 · (♯‘𝑃)) ∈ ℂ)
8382ad2antll 727 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 · (♯‘𝑃)) ∈ ℂ)
8458adantl 484 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
8561, 66addcld 10660 . . . . . 6 (𝐸 ∈ Fin → ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) ∈ ℂ)
8685ad2antll 727 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) ∈ ℂ)
8783, 84, 86addassd 10663 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((2 · (♯‘𝑃)) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))))
88 2cnd 11716 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 2 ∈ ℂ)
8981ad2antll 727 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝑃) ∈ ℂ)
9061ad2antll 727 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐽) ∈ ℂ)
9188, 89, 90adddid 10665 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 · ((♯‘𝑃) + (♯‘𝐽))) = ((2 · (♯‘𝑃)) + (2 · (♯‘𝐽))))
9276, 87, 913eqtr4d 2866 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
9392adantr 483 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
9455, 93eqtrd 2856 1 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wnel 3123  wral 3138  {crab 3142  Vcvv 3494  cdif 3933  {csn 4567  cop 4573  dom cdm 5555  cres 5557  cfv 6355  (class class class)co 7156  Fincfn 8509  cc 10535   + caddc 10540   · cmul 10542  2c2 11693  0cn0 11898  chash 13691  Σcsu 15042  Vtxcvtx 26781  iEdgciedg 26782  UPGraphcupgr 26865  VtxDegcvtxdg 27247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-rp 12391  df-xadd 12509  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-vtx 26783  df-iedg 26784  df-edg 26833  df-uhgr 26843  df-upgr 26867  df-vtxdg 27248
This theorem is referenced by:  finsumvtxdg2sstep  27331
  Copyright terms: Public domain W3C validator