MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2ssteplem4 Structured version   Visualization version   GIF version

Theorem finsumvtxdg2ssteplem4 29483
Description: Lemma for finsumvtxdg2sstep 29484. (Contributed by AV, 12-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdg2sstep.v 𝑉 = (Vtx‘𝐺)
finsumvtxdg2sstep.e 𝐸 = (iEdg‘𝐺)
finsumvtxdg2sstep.k 𝐾 = (𝑉 ∖ {𝑁})
finsumvtxdg2sstep.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
finsumvtxdg2sstep.p 𝑃 = (𝐸𝐼)
finsumvtxdg2sstep.s 𝑆 = ⟨𝐾, 𝑃
finsumvtxdg2ssteplem.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
finsumvtxdg2ssteplem4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁   𝑣,𝐸   𝑣,𝐺   𝑣,𝑁   𝑖,𝑉,𝑣   𝑖,𝐽   𝑣,𝐾
Allowed substitution hints:   𝑃(𝑣,𝑖)   𝑆(𝑣,𝑖)   𝐼(𝑣,𝑖)   𝐽(𝑣)   𝐾(𝑖)

Proof of Theorem finsumvtxdg2ssteplem4
StepHypRef Expression
1 finsumvtxdg2sstep.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
2 finsumvtxdg2sstep.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
3 finsumvtxdg2sstep.k . . . . . . . 8 𝐾 = (𝑉 ∖ {𝑁})
4 finsumvtxdg2sstep.i . . . . . . . 8 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
5 finsumvtxdg2sstep.p . . . . . . . 8 𝑃 = (𝐸𝐼)
6 finsumvtxdg2sstep.s . . . . . . . 8 𝑆 = ⟨𝐾, 𝑃
7 finsumvtxdg2ssteplem.j . . . . . . . 8 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
81, 2, 3, 4, 5, 6, 7vtxdginducedm1fi 29479 . . . . . . 7 (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
98ad2antll 729 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
109sumeq2d 15674 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})(((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
11 diffi 9145 . . . . . . . 8 (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin)
1211adantr 480 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (𝑉 ∖ {𝑁}) ∈ Fin)
1312adantl 481 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑉 ∖ {𝑁}) ∈ Fin)
145dmeqi 5871 . . . . . . . . 9 dom 𝑃 = dom (𝐸𝐼)
15 finresfin 9222 . . . . . . . . . 10 (𝐸 ∈ Fin → (𝐸𝐼) ∈ Fin)
16 dmfi 9293 . . . . . . . . . 10 ((𝐸𝐼) ∈ Fin → dom (𝐸𝐼) ∈ Fin)
1715, 16syl 17 . . . . . . . . 9 (𝐸 ∈ Fin → dom (𝐸𝐼) ∈ Fin)
1814, 17eqeltrid 2833 . . . . . . . 8 (𝐸 ∈ Fin → dom 𝑃 ∈ Fin)
1918ad2antll 729 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → dom 𝑃 ∈ Fin)
203eqcomi 2739 . . . . . . . . 9 (𝑉 ∖ {𝑁}) = 𝐾
2120eleq2i 2821 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ 𝑣𝐾)
2221biimpi 216 . . . . . . 7 (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣𝐾)
236fveq2i 6864 . . . . . . . . . 10 (Vtx‘𝑆) = (Vtx‘⟨𝐾, 𝑃⟩)
241fvexi 6875 . . . . . . . . . . . . 13 𝑉 ∈ V
2524difexi 5288 . . . . . . . . . . . 12 (𝑉 ∖ {𝑁}) ∈ V
263, 25eqeltri 2825 . . . . . . . . . . 11 𝐾 ∈ V
272fvexi 6875 . . . . . . . . . . . . 13 𝐸 ∈ V
2827resex 6003 . . . . . . . . . . . 12 (𝐸𝐼) ∈ V
295, 28eqeltri 2825 . . . . . . . . . . 11 𝑃 ∈ V
3026, 29opvtxfvi 28943 . . . . . . . . . 10 (Vtx‘⟨𝐾, 𝑃⟩) = 𝐾
3123, 30eqtr2i 2754 . . . . . . . . 9 𝐾 = (Vtx‘𝑆)
321, 2, 3, 4, 5, 6vtxdginducedm1lem1 29474 . . . . . . . . . 10 (iEdg‘𝑆) = 𝑃
3332eqcomi 2739 . . . . . . . . 9 𝑃 = (iEdg‘𝑆)
34 eqid 2730 . . . . . . . . 9 dom 𝑃 = dom 𝑃
3531, 33, 34vtxdgfisnn0 29410 . . . . . . . 8 ((dom 𝑃 ∈ Fin ∧ 𝑣𝐾) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0)
3635nn0cnd 12512 . . . . . . 7 ((dom 𝑃 ∈ Fin ∧ 𝑣𝐾) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℂ)
3719, 22, 36syl2an 596 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℂ)
38 dmfi 9293 . . . . . . . . . . . 12 (𝐸 ∈ Fin → dom 𝐸 ∈ Fin)
39 rabfi 9221 . . . . . . . . . . . 12 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
4038, 39syl 17 . . . . . . . . . . 11 (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
417, 40eqeltrid 2833 . . . . . . . . . 10 (𝐸 ∈ Fin → 𝐽 ∈ Fin)
42 rabfi 9221 . . . . . . . . . 10 (𝐽 ∈ Fin → {𝑖𝐽𝑣 ∈ (𝐸𝑖)} ∈ Fin)
43 hashcl 14328 . . . . . . . . . 10 ({𝑖𝐽𝑣 ∈ (𝐸𝑖)} ∈ Fin → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℕ0)
4441, 42, 433syl 18 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℕ0)
4544nn0cnd 12512 . . . . . . . 8 (𝐸 ∈ Fin → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
4645ad2antll 729 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
4746adantr 480 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
4813, 37, 47fsumadd 15713 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
4910, 48eqtrd 2765 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
503sumeq1i 15670 . . . . . 6 Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣)
5150eqeq1i 2735 . . . . 5 𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) ↔ Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)))
52 oveq1 7397 . . . . 5 𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) = ((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
5351, 52sylbi 217 . . . 4 𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) = ((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
5449, 53sylan9eq 2785 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = ((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
5554oveq1d 7405 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
5645adantl 481 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
5756adantr 480 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
5812, 57fsumcl 15706 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
59 hashcl 14328 . . . . . . . . . . 11 (𝐽 ∈ Fin → (♯‘𝐽) ∈ ℕ0)
6041, 59syl 17 . . . . . . . . . 10 (𝐸 ∈ Fin → (♯‘𝐽) ∈ ℕ0)
6160nn0cnd 12512 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘𝐽) ∈ ℂ)
6261adantl 481 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (♯‘𝐽) ∈ ℂ)
63 rabfi 9221 . . . . . . . . . . 11 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin)
64 hashcl 14328 . . . . . . . . . . 11 ({𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℕ0)
6538, 63, 643syl 18 . . . . . . . . . 10 (𝐸 ∈ Fin → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℕ0)
6665nn0cnd 12512 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℂ)
6766adantl 481 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℂ)
6858, 62, 67add12d 11408 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((♯‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
6968adantl 481 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((♯‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
701, 2, 3, 4, 5, 6, 7finsumvtxdg2ssteplem3 29482 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (♯‘𝐽))
7170oveq2d 7406 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((♯‘𝐽) + (♯‘𝐽)))
72612timesd 12432 . . . . . . . 8 (𝐸 ∈ Fin → (2 · (♯‘𝐽)) = ((♯‘𝐽) + (♯‘𝐽)))
7372eqcomd 2736 . . . . . . 7 (𝐸 ∈ Fin → ((♯‘𝐽) + (♯‘𝐽)) = (2 · (♯‘𝐽)))
7473ad2antll 729 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘𝐽) + (♯‘𝐽)) = (2 · (♯‘𝐽)))
7569, 71, 743eqtrd 2769 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · (♯‘𝐽)))
7675oveq2d 7406 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((2 · (♯‘𝑃)) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))) = ((2 · (♯‘𝑃)) + (2 · (♯‘𝐽))))
77 2cnd 12271 . . . . . . 7 (𝐸 ∈ Fin → 2 ∈ ℂ)
785, 15eqeltrid 2833 . . . . . . . . 9 (𝐸 ∈ Fin → 𝑃 ∈ Fin)
79 hashcl 14328 . . . . . . . . 9 (𝑃 ∈ Fin → (♯‘𝑃) ∈ ℕ0)
8078, 79syl 17 . . . . . . . 8 (𝐸 ∈ Fin → (♯‘𝑃) ∈ ℕ0)
8180nn0cnd 12512 . . . . . . 7 (𝐸 ∈ Fin → (♯‘𝑃) ∈ ℂ)
8277, 81mulcld 11201 . . . . . 6 (𝐸 ∈ Fin → (2 · (♯‘𝑃)) ∈ ℂ)
8382ad2antll 729 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 · (♯‘𝑃)) ∈ ℂ)
8458adantl 481 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
8561, 66addcld 11200 . . . . . 6 (𝐸 ∈ Fin → ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) ∈ ℂ)
8685ad2antll 729 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) ∈ ℂ)
8783, 84, 86addassd 11203 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((2 · (♯‘𝑃)) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))))
88 2cnd 12271 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 2 ∈ ℂ)
8981ad2antll 729 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝑃) ∈ ℂ)
9061ad2antll 729 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐽) ∈ ℂ)
9188, 89, 90adddid 11205 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 · ((♯‘𝑃) + (♯‘𝐽))) = ((2 · (♯‘𝑃)) + (2 · (♯‘𝐽))))
9276, 87, 913eqtr4d 2775 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
9392adantr 480 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
9455, 93eqtrd 2765 1 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnel 3030  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  {csn 4592  cop 4598  dom cdm 5641  cres 5643  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073   + caddc 11078   · cmul 11080  2c2 12248  0cn0 12449  chash 14302  Σcsu 15659  Vtxcvtx 28930  iEdgciedg 28931  UPGraphcupgr 29014  VtxDegcvtxdg 29400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-vtx 28932  df-iedg 28933  df-edg 28982  df-uhgr 28992  df-upgr 29016  df-vtxdg 29401
This theorem is referenced by:  finsumvtxdg2sstep  29484
  Copyright terms: Public domain W3C validator