MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2ssteplem4 Structured version   Visualization version   GIF version

Theorem finsumvtxdg2ssteplem4 29439
Description: Lemma for finsumvtxdg2sstep 29440. (Contributed by AV, 12-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdg2sstep.v 𝑉 = (Vtx‘𝐺)
finsumvtxdg2sstep.e 𝐸 = (iEdg‘𝐺)
finsumvtxdg2sstep.k 𝐾 = (𝑉 ∖ {𝑁})
finsumvtxdg2sstep.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
finsumvtxdg2sstep.p 𝑃 = (𝐸𝐼)
finsumvtxdg2sstep.s 𝑆 = ⟨𝐾, 𝑃
finsumvtxdg2ssteplem.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
finsumvtxdg2ssteplem4 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁   𝑣,𝐸   𝑣,𝐺   𝑣,𝑁   𝑖,𝑉,𝑣   𝑖,𝐽   𝑣,𝐾
Allowed substitution hints:   𝑃(𝑣,𝑖)   𝑆(𝑣,𝑖)   𝐼(𝑣,𝑖)   𝐽(𝑣)   𝐾(𝑖)

Proof of Theorem finsumvtxdg2ssteplem4
StepHypRef Expression
1 finsumvtxdg2sstep.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
2 finsumvtxdg2sstep.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
3 finsumvtxdg2sstep.k . . . . . . . 8 𝐾 = (𝑉 ∖ {𝑁})
4 finsumvtxdg2sstep.i . . . . . . . 8 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
5 finsumvtxdg2sstep.p . . . . . . . 8 𝑃 = (𝐸𝐼)
6 finsumvtxdg2sstep.s . . . . . . . 8 𝑆 = ⟨𝐾, 𝑃
7 finsumvtxdg2ssteplem.j . . . . . . . 8 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
81, 2, 3, 4, 5, 6, 7vtxdginducedm1fi 29435 . . . . . . 7 (𝐸 ∈ Fin → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
98ad2antll 727 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ∀𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
109sumeq2d 15689 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})(((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
11 diffi 9207 . . . . . . . 8 (𝑉 ∈ Fin → (𝑉 ∖ {𝑁}) ∈ Fin)
1211adantr 479 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (𝑉 ∖ {𝑁}) ∈ Fin)
1312adantl 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (𝑉 ∖ {𝑁}) ∈ Fin)
145dmeqi 5907 . . . . . . . . 9 dom 𝑃 = dom (𝐸𝐼)
15 finresfin 9298 . . . . . . . . . 10 (𝐸 ∈ Fin → (𝐸𝐼) ∈ Fin)
16 dmfi 9361 . . . . . . . . . 10 ((𝐸𝐼) ∈ Fin → dom (𝐸𝐼) ∈ Fin)
1715, 16syl 17 . . . . . . . . 9 (𝐸 ∈ Fin → dom (𝐸𝐼) ∈ Fin)
1814, 17eqeltrid 2829 . . . . . . . 8 (𝐸 ∈ Fin → dom 𝑃 ∈ Fin)
1918ad2antll 727 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → dom 𝑃 ∈ Fin)
203eqcomi 2734 . . . . . . . . 9 (𝑉 ∖ {𝑁}) = 𝐾
2120eleq2i 2817 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ {𝑁}) ↔ 𝑣𝐾)
2221biimpi 215 . . . . . . 7 (𝑣 ∈ (𝑉 ∖ {𝑁}) → 𝑣𝐾)
236fveq2i 6899 . . . . . . . . . 10 (Vtx‘𝑆) = (Vtx‘⟨𝐾, 𝑃⟩)
241fvexi 6910 . . . . . . . . . . . . 13 𝑉 ∈ V
2524difexi 5331 . . . . . . . . . . . 12 (𝑉 ∖ {𝑁}) ∈ V
263, 25eqeltri 2821 . . . . . . . . . . 11 𝐾 ∈ V
272fvexi 6910 . . . . . . . . . . . . 13 𝐸 ∈ V
2827resex 6034 . . . . . . . . . . . 12 (𝐸𝐼) ∈ V
295, 28eqeltri 2821 . . . . . . . . . . 11 𝑃 ∈ V
3026, 29opvtxfvi 28899 . . . . . . . . . 10 (Vtx‘⟨𝐾, 𝑃⟩) = 𝐾
3123, 30eqtr2i 2754 . . . . . . . . 9 𝐾 = (Vtx‘𝑆)
321, 2, 3, 4, 5, 6vtxdginducedm1lem1 29430 . . . . . . . . . 10 (iEdg‘𝑆) = 𝑃
3332eqcomi 2734 . . . . . . . . 9 𝑃 = (iEdg‘𝑆)
34 eqid 2725 . . . . . . . . 9 dom 𝑃 = dom 𝑃
3531, 33, 34vtxdgfisnn0 29366 . . . . . . . 8 ((dom 𝑃 ∈ Fin ∧ 𝑣𝐾) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℕ0)
3635nn0cnd 12572 . . . . . . 7 ((dom 𝑃 ∈ Fin ∧ 𝑣𝐾) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℂ)
3719, 22, 36syl2an 594 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → ((VtxDeg‘𝑆)‘𝑣) ∈ ℂ)
38 dmfi 9361 . . . . . . . . . . . 12 (𝐸 ∈ Fin → dom 𝐸 ∈ Fin)
39 rabfi 9297 . . . . . . . . . . . 12 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
4038, 39syl 17 . . . . . . . . . . 11 (𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} ∈ Fin)
417, 40eqeltrid 2829 . . . . . . . . . 10 (𝐸 ∈ Fin → 𝐽 ∈ Fin)
42 rabfi 9297 . . . . . . . . . 10 (𝐽 ∈ Fin → {𝑖𝐽𝑣 ∈ (𝐸𝑖)} ∈ Fin)
43 hashcl 14356 . . . . . . . . . 10 ({𝑖𝐽𝑣 ∈ (𝐸𝑖)} ∈ Fin → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℕ0)
4441, 42, 433syl 18 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℕ0)
4544nn0cnd 12572 . . . . . . . 8 (𝐸 ∈ Fin → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
4645ad2antll 727 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
4746adantr 479 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
4813, 37, 47fsumadd 15727 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(((VtxDeg‘𝑆)‘𝑣) + (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
4910, 48eqtrd 2765 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
503sumeq1i 15685 . . . . . 6 Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣)
5150eqeq1i 2730 . . . . 5 𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) ↔ Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)))
52 oveq1 7426 . . . . 5 𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) = ((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
5351, 52sylbi 216 . . . 4 𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝑆)‘𝑣) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) = ((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
5449, 53sylan9eq 2785 . . 3 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) = ((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})))
5554oveq1d 7434 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
5645adantl 480 . . . . . . . . . 10 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
5756adantr 479 . . . . . . . . 9 (((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) ∧ 𝑣 ∈ (𝑉 ∖ {𝑁})) → (♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
5812, 57fsumcl 15720 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
59 hashcl 14356 . . . . . . . . . . 11 (𝐽 ∈ Fin → (♯‘𝐽) ∈ ℕ0)
6041, 59syl 17 . . . . . . . . . 10 (𝐸 ∈ Fin → (♯‘𝐽) ∈ ℕ0)
6160nn0cnd 12572 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘𝐽) ∈ ℂ)
6261adantl 480 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (♯‘𝐽) ∈ ℂ)
63 rabfi 9297 . . . . . . . . . . 11 (dom 𝐸 ∈ Fin → {𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin)
64 hashcl 14356 . . . . . . . . . . 11 ({𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}} ∈ Fin → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℕ0)
6538, 63, 643syl 18 . . . . . . . . . 10 (𝐸 ∈ Fin → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℕ0)
6665nn0cnd 12572 . . . . . . . . 9 (𝐸 ∈ Fin → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℂ)
6766adantl 480 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}) ∈ ℂ)
6858, 62, 67add12d 11477 . . . . . . 7 ((𝑉 ∈ Fin ∧ 𝐸 ∈ Fin) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((♯‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
6968adantl 480 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((♯‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))))
701, 2, 3, 4, 5, 6, 7finsumvtxdg2ssteplem3 29438 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) = (♯‘𝐽))
7170oveq2d 7435 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘𝐽) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((♯‘𝐽) + (♯‘𝐽)))
72612timesd 12493 . . . . . . . 8 (𝐸 ∈ Fin → (2 · (♯‘𝐽)) = ((♯‘𝐽) + (♯‘𝐽)))
7372eqcomd 2731 . . . . . . 7 (𝐸 ∈ Fin → ((♯‘𝐽) + (♯‘𝐽)) = (2 · (♯‘𝐽)))
7473ad2antll 727 . . . . . 6 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘𝐽) + (♯‘𝐽)) = (2 · (♯‘𝐽)))
7569, 71, 743eqtrd 2769 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · (♯‘𝐽)))
7675oveq2d 7435 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((2 · (♯‘𝑃)) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))) = ((2 · (♯‘𝑃)) + (2 · (♯‘𝐽))))
77 2cnd 12328 . . . . . . 7 (𝐸 ∈ Fin → 2 ∈ ℂ)
785, 15eqeltrid 2829 . . . . . . . . 9 (𝐸 ∈ Fin → 𝑃 ∈ Fin)
79 hashcl 14356 . . . . . . . . 9 (𝑃 ∈ Fin → (♯‘𝑃) ∈ ℕ0)
8078, 79syl 17 . . . . . . . 8 (𝐸 ∈ Fin → (♯‘𝑃) ∈ ℕ0)
8180nn0cnd 12572 . . . . . . 7 (𝐸 ∈ Fin → (♯‘𝑃) ∈ ℂ)
8277, 81mulcld 11271 . . . . . 6 (𝐸 ∈ Fin → (2 · (♯‘𝑃)) ∈ ℂ)
8382ad2antll 727 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 · (♯‘𝑃)) ∈ ℂ)
8458adantl 480 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) ∈ ℂ)
8561, 66addcld 11270 . . . . . 6 (𝐸 ∈ Fin → ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) ∈ ℂ)
8685ad2antll 727 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})) ∈ ℂ)
8783, 84, 86addassd 11273 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = ((2 · (♯‘𝑃)) + (Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)}) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}})))))
88 2cnd 12328 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 2 ∈ ℂ)
8981ad2antll 727 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝑃) ∈ ℂ)
9061ad2antll 727 . . . . 5 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐽) ∈ ℂ)
9188, 89, 90adddid 11275 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (2 · ((♯‘𝑃) + (♯‘𝐽))) = ((2 · (♯‘𝑃)) + (2 · (♯‘𝐽))))
9276, 87, 913eqtr4d 2775 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
9392adantr 479 . 2 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (((2 · (♯‘𝑃)) + Σ𝑣 ∈ (𝑉 ∖ {𝑁})(♯‘{𝑖𝐽𝑣 ∈ (𝐸𝑖)})) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
9455, 93eqtrd 2765 1 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) ∧ Σ𝑣𝐾 ((VtxDeg‘𝑆)‘𝑣) = (2 · (♯‘𝑃))) → (Σ𝑣 ∈ (𝑉 ∖ {𝑁})((VtxDeg‘𝐺)‘𝑣) + ((♯‘𝐽) + (♯‘{𝑖 ∈ dom 𝐸 ∣ (𝐸𝑖) = {𝑁}}))) = (2 · ((♯‘𝑃) + (♯‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wnel 3035  wral 3050  {crab 3418  Vcvv 3461  cdif 3941  {csn 4630  cop 4636  dom cdm 5678  cres 5680  cfv 6549  (class class class)co 7419  Fincfn 8964  cc 11143   + caddc 11148   · cmul 11150  2c2 12305  0cn0 12510  chash 14330  Σcsu 15673  Vtxcvtx 28886  iEdgciedg 28887  UPGraphcupgr 28970  VtxDegcvtxdg 29356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9671  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9472  df-oi 9540  df-dju 9931  df-card 9969  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-rp 13015  df-xadd 13133  df-fz 13525  df-fzo 13668  df-seq 14008  df-exp 14068  df-hash 14331  df-cj 15087  df-re 15088  df-im 15089  df-sqrt 15223  df-abs 15224  df-clim 15473  df-sum 15674  df-vtx 28888  df-iedg 28889  df-edg 28938  df-uhgr 28948  df-upgr 28972  df-vtxdg 29357
This theorem is referenced by:  finsumvtxdg2sstep  29440
  Copyright terms: Public domain W3C validator