MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspn0 Structured version   Visualization version   GIF version

Theorem wspn0 27619
Description: If there are no vertices, then there are no simple paths (of any length), too. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wspn0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspn0 (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅)

Proof of Theorem wspn0
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wspthsn 27542 . 2 (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
2 wwlknbp1 27538 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)))
3 wspn0.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
43eqeq1i 2830 . . . . . . . . . . . 12 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
5 wrdeq 13879 . . . . . . . . . . . 12 ((Vtx‘𝐺) = ∅ → Word (Vtx‘𝐺) = Word ∅)
64, 5sylbi 218 . . . . . . . . . . 11 (𝑉 = ∅ → Word (Vtx‘𝐺) = Word ∅)
76eleq2d 2902 . . . . . . . . . 10 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word ∅))
8 0wrd0 13883 . . . . . . . . . 10 (𝑤 ∈ Word ∅ ↔ 𝑤 = ∅)
97, 8syl6bb 288 . . . . . . . . 9 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 = ∅))
10 fveq2 6666 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
11 hash0 13721 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
1210, 11syl6eq 2876 . . . . . . . . . . . . . 14 (𝑤 = ∅ → (♯‘𝑤) = 0)
1312eqeq1d 2827 . . . . . . . . . . . . 13 (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1)))
1413adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1)))
15 nn0p1gt0 11918 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
1615gt0ne0d 11196 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≠ 0)
17 eqneqall 3031 . . . . . . . . . . . . . . 15 ((𝑁 + 1) = 0 → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
1817eqcoms 2833 . . . . . . . . . . . . . 14 (0 = (𝑁 + 1) → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
1916, 18syl5com 31 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2019adantr 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑤 = ∅) → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2114, 20sylbid 241 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2221expcom 414 . . . . . . . . . 10 (𝑤 = ∅ → (𝑁 ∈ ℕ0 → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))
2322com23 86 . . . . . . . . 9 (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))
249, 23syl6bi 254 . . . . . . . 8 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))))
2524com14 96 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))))
26253imp 1105 . . . . . 6 ((𝑁 ∈ ℕ0𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
272, 26syl 17 . . . . 5 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2827impcom 408 . . . 4 ((𝑉 = ∅ ∧ 𝑤 ∈ (𝑁 WWalksN 𝐺)) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
2928ralrimiva 3186 . . 3 (𝑉 = ∅ → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
30 rabeq0 4341 . . 3 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
3129, 30sylibr 235 . 2 (𝑉 = ∅ → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅)
321, 31syl5eq 2872 1 (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wex 1773  wcel 2107  wne 3020  wral 3142  {crab 3146  c0 4294   class class class wbr 5062  cfv 6351  (class class class)co 7151  0cc0 10529  1c1 10530   + caddc 10532  0cn0 11889  chash 13683  Word cword 13854  Vtxcvtx 26697  SPathscspths 27410   WWalksN cwwlksn 27520   WSPathsN cwwspthsn 27522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-hash 13684  df-word 13855  df-wwlks 27524  df-wwlksn 27525  df-wspthsn 27527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator