MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspn0 Structured version   Visualization version   GIF version

Theorem wspn0 29944
Description: If there are no vertices, then there are no simple paths (of any length), too. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wspn0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspn0 (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅)

Proof of Theorem wspn0
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wspthsn 29868 . 2 (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
2 wwlknbp1 29864 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)))
3 wspn0.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
43eqeq1i 2742 . . . . . . . . . . . 12 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
5 wrdeq 14574 . . . . . . . . . . . 12 ((Vtx‘𝐺) = ∅ → Word (Vtx‘𝐺) = Word ∅)
64, 5sylbi 217 . . . . . . . . . . 11 (𝑉 = ∅ → Word (Vtx‘𝐺) = Word ∅)
76eleq2d 2827 . . . . . . . . . 10 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word ∅))
8 0wrd0 14578 . . . . . . . . . 10 (𝑤 ∈ Word ∅ ↔ 𝑤 = ∅)
97, 8bitrdi 287 . . . . . . . . 9 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 = ∅))
10 fveq2 6906 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
11 hash0 14406 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
1210, 11eqtrdi 2793 . . . . . . . . . . . . . 14 (𝑤 = ∅ → (♯‘𝑤) = 0)
1312eqeq1d 2739 . . . . . . . . . . . . 13 (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1)))
1413adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1)))
15 nn0p1gt0 12555 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
1615gt0ne0d 11827 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≠ 0)
17 eqneqall 2951 . . . . . . . . . . . . . . 15 ((𝑁 + 1) = 0 → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
1817eqcoms 2745 . . . . . . . . . . . . . 14 (0 = (𝑁 + 1) → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
1916, 18syl5com 31 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2019adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑤 = ∅) → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2114, 20sylbid 240 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2221expcom 413 . . . . . . . . . 10 (𝑤 = ∅ → (𝑁 ∈ ℕ0 → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))
2322com23 86 . . . . . . . . 9 (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))
249, 23biimtrdi 253 . . . . . . . 8 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))))
2524com14 96 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))))
26253imp 1111 . . . . . 6 ((𝑁 ∈ ℕ0𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
272, 26syl 17 . . . . 5 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2827impcom 407 . . . 4 ((𝑉 = ∅ ∧ 𝑤 ∈ (𝑁 WWalksN 𝐺)) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
2928ralrimiva 3146 . . 3 (𝑉 = ∅ → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
30 rabeq0 4388 . . 3 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
3129, 30sylibr 234 . 2 (𝑉 = ∅ → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅)
321, 31eqtrid 2789 1 (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  {crab 3436  c0 4333   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  0cn0 12526  chash 14369  Word cword 14552  Vtxcvtx 29013  SPathscspths 29731   WWalksN cwwlksn 29846   WSPathsN cwwspthsn 29848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-wwlks 29850  df-wwlksn 29851  df-wspthsn 29853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator