Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wspn0 | Structured version Visualization version GIF version |
Description: If there are no vertices, then there are no simple paths (of any length), too. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 13-Mar-2022.) |
Ref | Expression |
---|---|
wspn0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wspn0 | ⊢ (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wspthsn 27726 | . 2 ⊢ (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} | |
2 | wwlknbp1 27722 | . . . . . 6 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))) | |
3 | wspn0.v | . . . . . . . . . . . . 13 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | eqeq1i 2764 | . . . . . . . . . . . 12 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
5 | wrdeq 13928 | . . . . . . . . . . . 12 ⊢ ((Vtx‘𝐺) = ∅ → Word (Vtx‘𝐺) = Word ∅) | |
6 | 4, 5 | sylbi 220 | . . . . . . . . . . 11 ⊢ (𝑉 = ∅ → Word (Vtx‘𝐺) = Word ∅) |
7 | 6 | eleq2d 2838 | . . . . . . . . . 10 ⊢ (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word ∅)) |
8 | 0wrd0 13932 | . . . . . . . . . 10 ⊢ (𝑤 ∈ Word ∅ ↔ 𝑤 = ∅) | |
9 | 7, 8 | bitrdi 290 | . . . . . . . . 9 ⊢ (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 = ∅)) |
10 | fveq2 6659 | . . . . . . . . . . . . . . 15 ⊢ (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅)) | |
11 | hash0 13771 | . . . . . . . . . . . . . . 15 ⊢ (♯‘∅) = 0 | |
12 | 10, 11 | eqtrdi 2810 | . . . . . . . . . . . . . 14 ⊢ (𝑤 = ∅ → (♯‘𝑤) = 0) |
13 | 12 | eqeq1d 2761 | . . . . . . . . . . . . 13 ⊢ (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1))) |
14 | 13 | adantl 486 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1))) |
15 | nn0p1gt0 11956 | . . . . . . . . . . . . . . 15 ⊢ (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1)) | |
16 | 15 | gt0ne0d 11235 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ≠ 0) |
17 | eqneqall 2963 | . . . . . . . . . . . . . . 15 ⊢ ((𝑁 + 1) = 0 → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) | |
18 | 17 | eqcoms 2767 | . . . . . . . . . . . . . 14 ⊢ (0 = (𝑁 + 1) → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
19 | 16, 18 | syl5com 31 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ0 → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
20 | 19 | adantr 485 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤 = ∅) → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
21 | 14, 20 | sylbid 243 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
22 | 21 | expcom 418 | . . . . . . . . . 10 ⊢ (𝑤 = ∅ → (𝑁 ∈ ℕ0 → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))) |
23 | 22 | com23 86 | . . . . . . . . 9 ⊢ (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))) |
24 | 9, 23 | syl6bi 256 | . . . . . . . 8 ⊢ (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))) |
25 | 24 | com14 96 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))) |
26 | 25 | 3imp 1109 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
27 | 2, 26 | syl 17 | . . . . 5 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
28 | 27 | impcom 412 | . . . 4 ⊢ ((𝑉 = ∅ ∧ 𝑤 ∈ (𝑁 WWalksN 𝐺)) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤) |
29 | 28 | ralrimiva 3114 | . . 3 ⊢ (𝑉 = ∅ → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤) |
30 | rabeq0 4281 | . . 3 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤) | |
31 | 29, 30 | sylibr 237 | . 2 ⊢ (𝑉 = ∅ → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅) |
32 | 1, 31 | syl5eq 2806 | 1 ⊢ (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∃wex 1782 ∈ wcel 2112 ≠ wne 2952 ∀wral 3071 {crab 3075 ∅c0 4226 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 0cc0 10568 1c1 10569 + caddc 10571 ℕ0cn0 11927 ♯chash 13733 Word cword 13906 Vtxcvtx 26881 SPathscspths 27594 WWalksN cwwlksn 27704 WSPathsN cwwspthsn 27706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-n0 11928 df-z 12014 df-uz 12276 df-fz 12933 df-fzo 13076 df-hash 13734 df-word 13907 df-wwlks 27708 df-wwlksn 27709 df-wspthsn 27711 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |