| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wspn0 | Structured version Visualization version GIF version | ||
| Description: If there are no vertices, then there are no simple paths (of any length), too. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 13-Mar-2022.) |
| Ref | Expression |
|---|---|
| wspn0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| wspn0 | ⊢ (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wspthsn 29830 | . 2 ⊢ (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} | |
| 2 | wwlknbp1 29826 | . . . . . 6 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1))) | |
| 3 | wspn0.v | . . . . . . . . . . . . 13 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 4 | 3 | eqeq1i 2740 | . . . . . . . . . . . 12 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
| 5 | wrdeq 14554 | . . . . . . . . . . . 12 ⊢ ((Vtx‘𝐺) = ∅ → Word (Vtx‘𝐺) = Word ∅) | |
| 6 | 4, 5 | sylbi 217 | . . . . . . . . . . 11 ⊢ (𝑉 = ∅ → Word (Vtx‘𝐺) = Word ∅) |
| 7 | 6 | eleq2d 2820 | . . . . . . . . . 10 ⊢ (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word ∅)) |
| 8 | 0wrd0 14558 | . . . . . . . . . 10 ⊢ (𝑤 ∈ Word ∅ ↔ 𝑤 = ∅) | |
| 9 | 7, 8 | bitrdi 287 | . . . . . . . . 9 ⊢ (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 = ∅)) |
| 10 | fveq2 6876 | . . . . . . . . . . . . . . 15 ⊢ (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅)) | |
| 11 | hash0 14385 | . . . . . . . . . . . . . . 15 ⊢ (♯‘∅) = 0 | |
| 12 | 10, 11 | eqtrdi 2786 | . . . . . . . . . . . . . 14 ⊢ (𝑤 = ∅ → (♯‘𝑤) = 0) |
| 13 | 12 | eqeq1d 2737 | . . . . . . . . . . . . 13 ⊢ (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1))) |
| 14 | 13 | adantl 481 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1))) |
| 15 | nn0p1gt0 12530 | . . . . . . . . . . . . . . 15 ⊢ (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1)) | |
| 16 | 15 | gt0ne0d 11801 | . . . . . . . . . . . . . 14 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ≠ 0) |
| 17 | eqneqall 2943 | . . . . . . . . . . . . . . 15 ⊢ ((𝑁 + 1) = 0 → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) | |
| 18 | 17 | eqcoms 2743 | . . . . . . . . . . . . . 14 ⊢ (0 = (𝑁 + 1) → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
| 19 | 16, 18 | syl5com 31 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ ℕ0 → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
| 20 | 19 | adantr 480 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤 = ∅) → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
| 21 | 14, 20 | sylbid 240 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
| 22 | 21 | expcom 413 | . . . . . . . . . 10 ⊢ (𝑤 = ∅ → (𝑁 ∈ ℕ0 → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))) |
| 23 | 22 | com23 86 | . . . . . . . . 9 ⊢ (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))) |
| 24 | 9, 23 | biimtrdi 253 | . . . . . . . 8 ⊢ (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))) |
| 25 | 24 | com14 96 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))) |
| 26 | 25 | 3imp 1110 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
| 27 | 2, 26 | syl 17 | . . . . 5 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)) |
| 28 | 27 | impcom 407 | . . . 4 ⊢ ((𝑉 = ∅ ∧ 𝑤 ∈ (𝑁 WWalksN 𝐺)) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤) |
| 29 | 28 | ralrimiva 3132 | . . 3 ⊢ (𝑉 = ∅ → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤) |
| 30 | rabeq0 4363 | . . 3 ⊢ ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤) | |
| 31 | 29, 30 | sylibr 234 | . 2 ⊢ (𝑉 = ∅ → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅) |
| 32 | 1, 31 | eqtrid 2782 | 1 ⊢ (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 {crab 3415 ∅c0 4308 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 ℕ0cn0 12501 ♯chash 14348 Word cword 14531 Vtxcvtx 28975 SPathscspths 29693 WWalksN cwwlksn 29808 WSPathsN cwwspthsn 29810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-wwlks 29812 df-wwlksn 29813 df-wspthsn 29815 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |