MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspn0 Structured version   Visualization version   GIF version

Theorem wspn0 29954
Description: If there are no vertices, then there are no simple paths (of any length), too. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wspn0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspn0 (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅)

Proof of Theorem wspn0
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wspthsn 29878 . 2 (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
2 wwlknbp1 29874 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)))
3 wspn0.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
43eqeq1i 2740 . . . . . . . . . . . 12 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
5 wrdeq 14571 . . . . . . . . . . . 12 ((Vtx‘𝐺) = ∅ → Word (Vtx‘𝐺) = Word ∅)
64, 5sylbi 217 . . . . . . . . . . 11 (𝑉 = ∅ → Word (Vtx‘𝐺) = Word ∅)
76eleq2d 2825 . . . . . . . . . 10 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word ∅))
8 0wrd0 14575 . . . . . . . . . 10 (𝑤 ∈ Word ∅ ↔ 𝑤 = ∅)
97, 8bitrdi 287 . . . . . . . . 9 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 = ∅))
10 fveq2 6907 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
11 hash0 14403 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
1210, 11eqtrdi 2791 . . . . . . . . . . . . . 14 (𝑤 = ∅ → (♯‘𝑤) = 0)
1312eqeq1d 2737 . . . . . . . . . . . . 13 (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1)))
1413adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1)))
15 nn0p1gt0 12553 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
1615gt0ne0d 11825 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≠ 0)
17 eqneqall 2949 . . . . . . . . . . . . . . 15 ((𝑁 + 1) = 0 → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
1817eqcoms 2743 . . . . . . . . . . . . . 14 (0 = (𝑁 + 1) → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
1916, 18syl5com 31 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2019adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑤 = ∅) → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2114, 20sylbid 240 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2221expcom 413 . . . . . . . . . 10 (𝑤 = ∅ → (𝑁 ∈ ℕ0 → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))
2322com23 86 . . . . . . . . 9 (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))
249, 23biimtrdi 253 . . . . . . . 8 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))))
2524com14 96 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))))
26253imp 1110 . . . . . 6 ((𝑁 ∈ ℕ0𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
272, 26syl 17 . . . . 5 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2827impcom 407 . . . 4 ((𝑉 = ∅ ∧ 𝑤 ∈ (𝑁 WWalksN 𝐺)) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
2928ralrimiva 3144 . . 3 (𝑉 = ∅ → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
30 rabeq0 4394 . . 3 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
3129, 30sylibr 234 . 2 (𝑉 = ∅ → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅)
321, 31eqtrid 2787 1 (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  {crab 3433  c0 4339   class class class wbr 5148  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  0cn0 12524  chash 14366  Word cword 14549  Vtxcvtx 29028  SPathscspths 29746   WWalksN cwwlksn 29856   WSPathsN cwwspthsn 29858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-wwlks 29860  df-wwlksn 29861  df-wspthsn 29863
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator