MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspn0 Structured version   Visualization version   GIF version

Theorem wspn0 27710
Description: If there are no vertices, then there are no simple paths (of any length), too. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wspn0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspn0 (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅)

Proof of Theorem wspn0
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wspthsn 27634 . 2 (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
2 wwlknbp1 27630 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)))
3 wspn0.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
43eqeq1i 2803 . . . . . . . . . . . 12 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
5 wrdeq 13879 . . . . . . . . . . . 12 ((Vtx‘𝐺) = ∅ → Word (Vtx‘𝐺) = Word ∅)
64, 5sylbi 220 . . . . . . . . . . 11 (𝑉 = ∅ → Word (Vtx‘𝐺) = Word ∅)
76eleq2d 2875 . . . . . . . . . 10 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word ∅))
8 0wrd0 13883 . . . . . . . . . 10 (𝑤 ∈ Word ∅ ↔ 𝑤 = ∅)
97, 8syl6bb 290 . . . . . . . . 9 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 = ∅))
10 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
11 hash0 13724 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
1210, 11eqtrdi 2849 . . . . . . . . . . . . . 14 (𝑤 = ∅ → (♯‘𝑤) = 0)
1312eqeq1d 2800 . . . . . . . . . . . . 13 (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1)))
1413adantl 485 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1)))
15 nn0p1gt0 11914 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
1615gt0ne0d 11193 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≠ 0)
17 eqneqall 2998 . . . . . . . . . . . . . . 15 ((𝑁 + 1) = 0 → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
1817eqcoms 2806 . . . . . . . . . . . . . 14 (0 = (𝑁 + 1) → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
1916, 18syl5com 31 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2019adantr 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑤 = ∅) → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2114, 20sylbid 243 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2221expcom 417 . . . . . . . . . 10 (𝑤 = ∅ → (𝑁 ∈ ℕ0 → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))
2322com23 86 . . . . . . . . 9 (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))
249, 23syl6bi 256 . . . . . . . 8 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))))
2524com14 96 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))))
26253imp 1108 . . . . . 6 ((𝑁 ∈ ℕ0𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
272, 26syl 17 . . . . 5 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2827impcom 411 . . . 4 ((𝑉 = ∅ ∧ 𝑤 ∈ (𝑁 WWalksN 𝐺)) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
2928ralrimiva 3149 . . 3 (𝑉 = ∅ → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
30 rabeq0 4292 . . 3 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
3129, 30sylibr 237 . 2 (𝑉 = ∅ → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅)
321, 31syl5eq 2845 1 (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  {crab 3110  c0 4243   class class class wbr 5030  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  0cn0 11885  chash 13686  Word cword 13857  Vtxcvtx 26789  SPathscspths 27502   WWalksN cwwlksn 27612   WSPathsN cwwspthsn 27614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-wwlks 27616  df-wwlksn 27617  df-wspthsn 27619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator