MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspn0 Structured version   Visualization version   GIF version

Theorem wspn0 29957
Description: If there are no vertices, then there are no simple paths (of any length), too. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 13-Mar-2022.)
Hypothesis
Ref Expression
wspn0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspn0 (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅)

Proof of Theorem wspn0
Dummy variables 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wspthsn 29881 . 2 (𝑁 WSPathsN 𝐺) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤}
2 wwlknbp1 29877 . . . . . 6 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ0𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)))
3 wspn0.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
43eqeq1i 2745 . . . . . . . . . . . 12 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
5 wrdeq 14584 . . . . . . . . . . . 12 ((Vtx‘𝐺) = ∅ → Word (Vtx‘𝐺) = Word ∅)
64, 5sylbi 217 . . . . . . . . . . 11 (𝑉 = ∅ → Word (Vtx‘𝐺) = Word ∅)
76eleq2d 2830 . . . . . . . . . 10 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 ∈ Word ∅))
8 0wrd0 14588 . . . . . . . . . 10 (𝑤 ∈ Word ∅ ↔ 𝑤 = ∅)
97, 8bitrdi 287 . . . . . . . . 9 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑤 = ∅))
10 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
11 hash0 14416 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
1210, 11eqtrdi 2796 . . . . . . . . . . . . . 14 (𝑤 = ∅ → (♯‘𝑤) = 0)
1312eqeq1d 2742 . . . . . . . . . . . . 13 (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1)))
1413adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) ↔ 0 = (𝑁 + 1)))
15 nn0p1gt0 12582 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
1615gt0ne0d 11854 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≠ 0)
17 eqneqall 2957 . . . . . . . . . . . . . . 15 ((𝑁 + 1) = 0 → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
1817eqcoms 2748 . . . . . . . . . . . . . 14 (0 = (𝑁 + 1) → ((𝑁 + 1) ≠ 0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
1916, 18syl5com 31 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2019adantr 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑤 = ∅) → (0 = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2114, 20sylbid 240 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑤 = ∅) → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2221expcom 413 . . . . . . . . . 10 (𝑤 = ∅ → (𝑁 ∈ ℕ0 → ((♯‘𝑤) = (𝑁 + 1) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))
2322com23 86 . . . . . . . . 9 (𝑤 = ∅ → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)))
249, 23biimtrdi 253 . . . . . . . 8 (𝑉 = ∅ → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ ℕ0 → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))))
2524com14 96 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑤 ∈ Word (Vtx‘𝐺) → ((♯‘𝑤) = (𝑁 + 1) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))))
26253imp 1111 . . . . . 6 ((𝑁 ∈ ℕ0𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
272, 26syl 17 . . . . 5 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑉 = ∅ → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤))
2827impcom 407 . . . 4 ((𝑉 = ∅ ∧ 𝑤 ∈ (𝑁 WWalksN 𝐺)) → ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
2928ralrimiva 3152 . . 3 (𝑉 = ∅ → ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
30 rabeq0 4411 . . 3 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅ ↔ ∀𝑤 ∈ (𝑁 WWalksN 𝐺) ¬ ∃𝑓 𝑓(SPaths‘𝐺)𝑤)
3129, 30sylibr 234 . 2 (𝑉 = ∅ → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ∃𝑓 𝑓(SPaths‘𝐺)𝑤} = ∅)
321, 31eqtrid 2792 1 (𝑉 = ∅ → (𝑁 WSPathsN 𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  {crab 3443  c0 4352   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  0cn0 12553  chash 14379  Word cword 14562  Vtxcvtx 29031  SPathscspths 29749   WWalksN cwwlksn 29859   WSPathsN cwwspthsn 29861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-wwlks 29863  df-wwlksn 29864  df-wspthsn 29866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator