![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xdivcld | Structured version Visualization version GIF version |
Description: Closure law for the extended division. (Contributed by Thierry Arnoux, 15-Mar-2017.) |
Ref | Expression |
---|---|
xdivcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xdivcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
xdivcld.3 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
xdivcld | ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xdivcld.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xdivcld.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | xdivcld.3 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | xdivval 32861 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | . 2 ⊢ (𝜑 → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
6 | xreceu 32864 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) | |
7 | 1, 2, 3, 6 | syl3anc 1369 | . . 3 ⊢ (𝜑 → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) |
8 | riotacl 7399 | . . 3 ⊢ (∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴 → (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) ∈ ℝ*) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) ∈ ℝ*) |
10 | 5, 9 | eqeltrd 2837 | 1 ⊢ (𝜑 → (𝐴 /𝑒 𝐵) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1535 ∈ wcel 2104 ≠ wne 2936 ∃!wreu 3374 ℩crio 7380 (class class class)co 7425 ℝcr 11145 0cc0 11146 ℝ*cxr 11285 ·e cxmu 13144 /𝑒 cxdiv 32859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-po 5590 df-so 5591 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-riota 7381 df-ov 7428 df-oprab 7429 df-mpo 7430 df-1st 8007 df-2nd 8008 df-er 8738 df-en 8979 df-dom 8980 df-sdom 8981 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11485 df-neg 11486 df-xneg 13145 df-xmul 13147 df-xdiv 32860 |
This theorem is referenced by: xdivcl 32866 xdivrec 32869 |
Copyright terms: Public domain | W3C validator |