Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xdivmul Structured version   Visualization version   GIF version

Theorem xdivmul 32853
Description: Relationship between division and multiplication. (Contributed by Thierry Arnoux, 24-Dec-2016.)
Assertion
Ref Expression
xdivmul ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ((𝐴 /𝑒 𝐶) = 𝐵 ↔ (𝐶 ·e 𝐵) = 𝐴))

Proof of Theorem xdivmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xdivval 32847 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐴 /𝑒 𝐶) = (𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴))
213expb 1120 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → (𝐴 /𝑒 𝐶) = (𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴))
323adant2 1131 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → (𝐴 /𝑒 𝐶) = (𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴))
43eqeq1d 2732 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ((𝐴 /𝑒 𝐶) = 𝐵 ↔ (𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴) = 𝐵))
5 simp2 1137 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℝ*)
6 xreceu 32850 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴)
763expb 1120 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴)
873adant2 1131 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴)
9 oveq2 7402 . . . . 5 (𝑥 = 𝐵 → (𝐶 ·e 𝑥) = (𝐶 ·e 𝐵))
109eqeq1d 2732 . . . 4 (𝑥 = 𝐵 → ((𝐶 ·e 𝑥) = 𝐴 ↔ (𝐶 ·e 𝐵) = 𝐴))
1110riota2 7376 . . 3 ((𝐵 ∈ ℝ* ∧ ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴) → ((𝐶 ·e 𝐵) = 𝐴 ↔ (𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴) = 𝐵))
125, 8, 11syl2anc 584 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ((𝐶 ·e 𝐵) = 𝐴 ↔ (𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴) = 𝐵))
134, 12bitr4d 282 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ((𝐴 /𝑒 𝐶) = 𝐵 ↔ (𝐶 ·e 𝐵) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2927  ∃!wreu 3355  crio 7350  (class class class)co 7394  cr 11085  0cc0 11086  *cxr 11225   ·e cxmu 13084   /𝑒 cxdiv 32845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-po 5554  df-so 5555  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-xneg 13085  df-xmul 13087  df-xdiv 32846
This theorem is referenced by:  xdivrec  32855
  Copyright terms: Public domain W3C validator