Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xdivmul Structured version   Visualization version   GIF version

Theorem xdivmul 31307
Description: Relationship between division and multiplication. (Contributed by Thierry Arnoux, 24-Dec-2016.)
Assertion
Ref Expression
xdivmul ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ((𝐴 /𝑒 𝐶) = 𝐵 ↔ (𝐶 ·e 𝐵) = 𝐴))

Proof of Theorem xdivmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 xdivval 31301 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → (𝐴 /𝑒 𝐶) = (𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴))
213expb 1119 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → (𝐴 /𝑒 𝐶) = (𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴))
323adant2 1130 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → (𝐴 /𝑒 𝐶) = (𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴))
43eqeq1d 2739 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ((𝐴 /𝑒 𝐶) = 𝐵 ↔ (𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴) = 𝐵))
5 simp2 1136 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → 𝐵 ∈ ℝ*)
6 xreceu 31304 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴)
763expb 1119 . . . 4 ((𝐴 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴)
873adant2 1130 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴)
9 oveq2 7321 . . . . 5 (𝑥 = 𝐵 → (𝐶 ·e 𝑥) = (𝐶 ·e 𝐵))
109eqeq1d 2739 . . . 4 (𝑥 = 𝐵 → ((𝐶 ·e 𝑥) = 𝐴 ↔ (𝐶 ·e 𝐵) = 𝐴))
1110riota2 7296 . . 3 ((𝐵 ∈ ℝ* ∧ ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴) → ((𝐶 ·e 𝐵) = 𝐴 ↔ (𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴) = 𝐵))
125, 8, 11syl2anc 584 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ((𝐶 ·e 𝐵) = 𝐴 ↔ (𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝐴) = 𝐵))
134, 12bitr4d 281 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ ∧ 𝐶 ≠ 0)) → ((𝐴 /𝑒 𝐶) = 𝐵 ↔ (𝐶 ·e 𝐵) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2941  ∃!wreu 3348  crio 7269  (class class class)co 7313  cr 10940  0cc0 10941  *cxr 11078   ·e cxmu 12917   /𝑒 cxdiv 31299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-po 5519  df-so 5520  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-1st 7874  df-2nd 7875  df-er 8544  df-en 8780  df-dom 8781  df-sdom 8782  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-xneg 12918  df-xmul 12920  df-xdiv 31300
This theorem is referenced by:  xdivrec  31309
  Copyright terms: Public domain W3C validator