| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrsdsval | Structured version Visualization version GIF version | ||
| Description: The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrsds.d | ⊢ 𝐷 = (dist‘ℝ*𝑠) |
| Ref | Expression |
|---|---|
| xrsdsval | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq12 5148 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ≤ 𝑦 ↔ 𝐴 ≤ 𝐵)) | |
| 2 | id 22 | . . . 4 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
| 3 | xnegeq 13249 | . . . 4 ⊢ (𝑥 = 𝐴 → -𝑒𝑥 = -𝑒𝐴) | |
| 4 | 2, 3 | oveqan12rd 7451 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 +𝑒 -𝑒𝑥) = (𝐵 +𝑒 -𝑒𝐴)) |
| 5 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 6 | xnegeq 13249 | . . . 4 ⊢ (𝑦 = 𝐵 → -𝑒𝑦 = -𝑒𝐵) | |
| 7 | 5, 6 | oveqan12d 7450 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 +𝑒 -𝑒𝑦) = (𝐴 +𝑒 -𝑒𝐵)) |
| 8 | 1, 4, 7 | ifbieq12d 4554 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) |
| 9 | xrsds.d | . . 3 ⊢ 𝐷 = (dist‘ℝ*𝑠) | |
| 10 | 9 | xrsds 21427 | . 2 ⊢ 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) |
| 11 | ovex 7464 | . . 3 ⊢ (𝐵 +𝑒 -𝑒𝐴) ∈ V | |
| 12 | ovex 7464 | . . 3 ⊢ (𝐴 +𝑒 -𝑒𝐵) ∈ V | |
| 13 | 11, 12 | ifex 4576 | . 2 ⊢ if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ V |
| 14 | 8, 10, 13 | ovmpoa 7588 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4525 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℝ*cxr 11294 ≤ cle 11296 -𝑒cxne 13151 +𝑒 cxad 13152 distcds 17306 ℝ*𝑠cxrs 17545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-xneg 13154 df-xadd 13155 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-tset 17316 df-ple 17317 df-ds 17319 df-xrs 17547 |
| This theorem is referenced by: xrsdsreval 21429 xrsdsreclb 21431 xmetrtri2 24366 xrsxmet 24831 metdscn 24878 |
| Copyright terms: Public domain | W3C validator |