| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dibn0 | Structured version Visualization version GIF version | ||
| Description: The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014.) |
| Ref | Expression |
|---|---|
| dibn0.b | ⊢ 𝐵 = (Base‘𝐾) |
| dibn0.l | ⊢ ≤ = (le‘𝐾) |
| dibn0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dibn0.i | ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dibn0 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dibn0.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dibn0.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | dibn0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | eqid 2731 | . . 3 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 5 | eqid 2731 | . . 3 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) | |
| 6 | eqid 2731 | . . 3 ⊢ ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊) | |
| 7 | dibn0.i | . . 3 ⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | dibval2 41189 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))})) |
| 9 | 1, 2, 3, 6 | dian0 41084 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑋) ≠ ∅) |
| 10 | fvex 6835 | . . . . . 6 ⊢ ((LTrn‘𝐾)‘𝑊) ∈ V | |
| 11 | 10 | mptex 7157 | . . . . 5 ⊢ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ V |
| 12 | 11 | snnz 4729 | . . . 4 ⊢ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ≠ ∅ |
| 13 | 9, 12 | jctir 520 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ≠ ∅ ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ≠ ∅)) |
| 14 | xpnz 6106 | . . 3 ⊢ (((((DIsoA‘𝐾)‘𝑊)‘𝑋) ≠ ∅ ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ≠ ∅) ↔ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ≠ ∅) | |
| 15 | 13, 14 | sylib 218 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ≠ ∅) |
| 16 | 8, 15 | eqnetrd 2995 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 {csn 4576 class class class wbr 5091 ↦ cmpt 5172 I cid 5510 × cxp 5614 ↾ cres 5618 ‘cfv 6481 Basecbs 17120 lecple 17168 HLchlt 39395 LHypclh 40029 LTrncltrn 40146 DIsoAcdia 41073 DIsoBcdib 41183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-oposet 39221 df-ol 39223 df-oml 39224 df-covers 39311 df-ats 39312 df-atl 39343 df-cvlat 39367 df-hlat 39396 df-lhyp 40033 df-laut 40034 df-ldil 40149 df-ltrn 40150 df-trl 40204 df-disoa 41074 df-dib 41184 |
| This theorem is referenced by: dibord 41204 diblss 41215 |
| Copyright terms: Public domain | W3C validator |