Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibn0 Structured version   Visualization version   GIF version

Theorem dibn0 39094
Description: The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014.)
Hypotheses
Ref Expression
dibn0.b 𝐵 = (Base‘𝐾)
dibn0.l = (le‘𝐾)
dibn0.h 𝐻 = (LHyp‘𝐾)
dibn0.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibn0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)

Proof of Theorem dibn0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dibn0.b . . 3 𝐵 = (Base‘𝐾)
2 dibn0.l . . 3 = (le‘𝐾)
3 dibn0.h . . 3 𝐻 = (LHyp‘𝐾)
4 eqid 2738 . . 3 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
5 eqid 2738 . . 3 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
6 eqid 2738 . . 3 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dibn0.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 39085 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
91, 2, 3, 6dian0 38980 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑋) ≠ ∅)
10 fvex 6769 . . . . . 6 ((LTrn‘𝐾)‘𝑊) ∈ V
1110mptex 7081 . . . . 5 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ V
1211snnz 4709 . . . 4 {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ≠ ∅
139, 12jctir 520 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ≠ ∅ ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ≠ ∅))
14 xpnz 6051 . . 3 (((((DIsoA‘𝐾)‘𝑊)‘𝑋) ≠ ∅ ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ≠ ∅) ↔ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ≠ ∅)
1513, 14sylib 217 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ≠ ∅)
168, 15eqnetrd 3010 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  c0 4253  {csn 4558   class class class wbr 5070  cmpt 5153   I cid 5479   × cxp 5578  cres 5582  cfv 6418  Basecbs 16840  lecple 16895  HLchlt 37291  LHypclh 37925  LTrncltrn 38042  DIsoAcdia 38969  DIsoBcdib 39079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-lhyp 37929  df-laut 37930  df-ldil 38045  df-ltrn 38046  df-trl 38100  df-disoa 38970  df-dib 39080
This theorem is referenced by:  dibord  39100  diblss  39111
  Copyright terms: Public domain W3C validator