![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dibn0 | Structured version Visualization version GIF version |
Description: The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014.) |
Ref | Expression |
---|---|
dibn0.b | β’ π΅ = (BaseβπΎ) |
dibn0.l | β’ β€ = (leβπΎ) |
dibn0.h | β’ π» = (LHypβπΎ) |
dibn0.i | β’ πΌ = ((DIsoBβπΎ)βπ) |
Ref | Expression |
---|---|
dibn0 | β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) β β ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dibn0.b | . . 3 β’ π΅ = (BaseβπΎ) | |
2 | dibn0.l | . . 3 β’ β€ = (leβπΎ) | |
3 | dibn0.h | . . 3 β’ π» = (LHypβπΎ) | |
4 | eqid 2732 | . . 3 β’ ((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) | |
5 | eqid 2732 | . . 3 β’ (π β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅)) = (π β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅)) | |
6 | eqid 2732 | . . 3 β’ ((DIsoAβπΎ)βπ) = ((DIsoAβπΎ)βπ) | |
7 | dibn0.i | . . 3 β’ πΌ = ((DIsoBβπΎ)βπ) | |
8 | 1, 2, 3, 4, 5, 6, 7 | dibval2 40318 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) = ((((DIsoAβπΎ)βπ)βπ) Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))})) |
9 | 1, 2, 3, 6 | dian0 40213 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (((DIsoAβπΎ)βπ)βπ) β β ) |
10 | fvex 6904 | . . . . . 6 β’ ((LTrnβπΎ)βπ) β V | |
11 | 10 | mptex 7227 | . . . . 5 β’ (π β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅)) β V |
12 | 11 | snnz 4780 | . . . 4 β’ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))} β β |
13 | 9, 12 | jctir 521 | . . 3 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β ((((DIsoAβπΎ)βπ)βπ) β β β§ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))} β β )) |
14 | xpnz 6158 | . . 3 β’ (((((DIsoAβπΎ)βπ)βπ) β β β§ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))} β β ) β ((((DIsoAβπΎ)βπ)βπ) Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))}) β β ) | |
15 | 13, 14 | sylib 217 | . 2 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β ((((DIsoAβπΎ)βπ)βπ) Γ {(π β ((LTrnβπΎ)βπ) β¦ ( I βΎ π΅))}) β β ) |
16 | 8, 15 | eqnetrd 3008 | 1 β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β€ π)) β (πΌβπ) β β ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 β c0 4322 {csn 4628 class class class wbr 5148 β¦ cmpt 5231 I cid 5573 Γ cxp 5674 βΎ cres 5678 βcfv 6543 Basecbs 17148 lecple 17208 HLchlt 38523 LHypclh 39158 LTrncltrn 39275 DIsoAcdia 40202 DIsoBcdib 40312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-join 18305 df-meet 18306 df-p0 18382 df-p1 18383 df-lat 18389 df-clat 18456 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 df-lhyp 39162 df-laut 39163 df-ldil 39278 df-ltrn 39279 df-trl 39333 df-disoa 40203 df-dib 40313 |
This theorem is referenced by: dibord 40333 diblss 40344 |
Copyright terms: Public domain | W3C validator |