Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dibn0 Structured version   Visualization version   GIF version

Theorem dibn0 39414
Description: The value of the partial isomorphism B is not empty. (Contributed by NM, 18-Jan-2014.)
Hypotheses
Ref Expression
dibn0.b 𝐵 = (Base‘𝐾)
dibn0.l = (le‘𝐾)
dibn0.h 𝐻 = (LHyp‘𝐾)
dibn0.i 𝐼 = ((DIsoB‘𝐾)‘𝑊)
Assertion
Ref Expression
dibn0 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)

Proof of Theorem dibn0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dibn0.b . . 3 𝐵 = (Base‘𝐾)
2 dibn0.l . . 3 = (le‘𝐾)
3 dibn0.h . . 3 𝐻 = (LHyp‘𝐾)
4 eqid 2736 . . 3 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
5 eqid 2736 . . 3 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))
6 eqid 2736 . . 3 ((DIsoA‘𝐾)‘𝑊) = ((DIsoA‘𝐾)‘𝑊)
7 dibn0.i . . 3 𝐼 = ((DIsoB‘𝐾)‘𝑊)
81, 2, 3, 4, 5, 6, 7dibval2 39405 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) = ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}))
91, 2, 3, 6dian0 39300 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (((DIsoA‘𝐾)‘𝑊)‘𝑋) ≠ ∅)
10 fvex 6832 . . . . . 6 ((LTrn‘𝐾)‘𝑊) ∈ V
1110mptex 7149 . . . . 5 (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) ∈ V
1211snnz 4723 . . . 4 {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ≠ ∅
139, 12jctir 521 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) ≠ ∅ ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ≠ ∅))
14 xpnz 6091 . . 3 (((((DIsoA‘𝐾)‘𝑊)‘𝑋) ≠ ∅ ∧ {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))} ≠ ∅) ↔ ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ≠ ∅)
1513, 14sylib 217 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → ((((DIsoA‘𝐾)‘𝑊)‘𝑋) × {(𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵))}) ≠ ∅)
168, 15eqnetrd 3008 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵𝑋 𝑊)) → (𝐼𝑋) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2940  c0 4268  {csn 4572   class class class wbr 5089  cmpt 5172   I cid 5511   × cxp 5612  cres 5616  cfv 6473  Basecbs 17001  lecple 17058  HLchlt 37610  LHypclh 38245  LTrncltrn 38362  DIsoAcdia 39289  DIsoBcdib 39399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-map 8680  df-proset 18102  df-poset 18120  df-plt 18137  df-lub 18153  df-glb 18154  df-join 18155  df-meet 18156  df-p0 18232  df-p1 18233  df-lat 18239  df-clat 18306  df-oposet 37436  df-ol 37438  df-oml 37439  df-covers 37526  df-ats 37527  df-atl 37558  df-cvlat 37582  df-hlat 37611  df-lhyp 38249  df-laut 38250  df-ldil 38365  df-ltrn 38366  df-trl 38420  df-disoa 39290  df-dib 39400
This theorem is referenced by:  dibord  39420  diblss  39431
  Copyright terms: Public domain W3C validator