![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpord2ind | Structured version Visualization version GIF version |
Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024.) |
Ref | Expression |
---|---|
xpord2ind.1 | ⊢ 𝑅 Fr 𝐴 |
xpord2ind.2 | ⊢ 𝑅 Po 𝐴 |
xpord2ind.3 | ⊢ 𝑅 Se 𝐴 |
xpord2ind.4 | ⊢ 𝑆 Fr 𝐵 |
xpord2ind.5 | ⊢ 𝑆 Po 𝐵 |
xpord2ind.6 | ⊢ 𝑆 Se 𝐵 |
xpord2ind.7 | ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) |
xpord2ind.8 | ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) |
xpord2ind.9 | ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) |
xpord2ind.11 | ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) |
xpord2ind.12 | ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) |
xpord2ind.i | ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑)) |
Ref | Expression |
---|---|
xpord2ind | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝜂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | |
2 | xpord2ind.1 | . 2 ⊢ 𝑅 Fr 𝐴 | |
3 | xpord2ind.2 | . 2 ⊢ 𝑅 Po 𝐴 | |
4 | xpord2ind.3 | . 2 ⊢ 𝑅 Se 𝐴 | |
5 | xpord2ind.4 | . 2 ⊢ 𝑆 Fr 𝐵 | |
6 | xpord2ind.5 | . 2 ⊢ 𝑆 Po 𝐵 | |
7 | xpord2ind.6 | . 2 ⊢ 𝑆 Se 𝐵 | |
8 | xpord2ind.7 | . 2 ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) | |
9 | xpord2ind.8 | . 2 ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) | |
10 | xpord2ind.9 | . 2 ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) | |
11 | xpord2ind.11 | . 2 ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) | |
12 | xpord2ind.12 | . 2 ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) | |
13 | xpord2ind.i | . 2 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑)) | |
14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | xpord2indlem 8188 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝜂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 class class class wbr 5166 {copab 5228 Po wpo 5605 Fr wfr 5649 Se wse 5650 × cxp 5698 Predcpred 6331 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-fr 5652 df-se 5653 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: on2ind 8725 no2indslem 28005 |
Copyright terms: Public domain | W3C validator |