MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpord2ind Structured version   Visualization version   GIF version

Theorem xpord2ind 8134
Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024.)
Hypotheses
Ref Expression
xpord2ind.1 𝑅 Fr 𝐴
xpord2ind.2 𝑅 Po 𝐴
xpord2ind.3 𝑅 Se 𝐴
xpord2ind.4 𝑆 Fr 𝐵
xpord2ind.5 𝑆 Po 𝐵
xpord2ind.6 𝑆 Se 𝐵
xpord2ind.7 (𝑎 = 𝑐 → (𝜑𝜓))
xpord2ind.8 (𝑏 = 𝑑 → (𝜓𝜒))
xpord2ind.9 (𝑎 = 𝑐 → (𝜃𝜒))
xpord2ind.11 (𝑎 = 𝑋 → (𝜑𝜏))
xpord2ind.12 (𝑏 = 𝑌 → (𝜏𝜂))
xpord2ind.i ((𝑎𝐴𝑏𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑))
Assertion
Ref Expression
xpord2ind ((𝑋𝐴𝑌𝐵) → 𝜂)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑   𝜓,𝑎   𝜏,𝑎   𝐵,𝑎,𝑏,𝑐,𝑑   𝜒,𝑏   𝜂,𝑏   𝜑,𝑐   𝜃,𝑐   𝜓,𝑑   𝑅,𝑎,𝑏,𝑐,𝑑   𝑆,𝑎,𝑏,𝑐,𝑑   𝑋,𝑎,𝑏   𝑌,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑑)   𝜓(𝑏,𝑐)   𝜒(𝑎,𝑐,𝑑)   𝜃(𝑎,𝑏,𝑑)   𝜏(𝑏,𝑐,𝑑)   𝜂(𝑎,𝑐,𝑑)   𝑋(𝑐,𝑑)   𝑌(𝑎,𝑐,𝑑)

Proof of Theorem xpord2ind
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
2 xpord2ind.1 . 2 𝑅 Fr 𝐴
3 xpord2ind.2 . 2 𝑅 Po 𝐴
4 xpord2ind.3 . 2 𝑅 Se 𝐴
5 xpord2ind.4 . 2 𝑆 Fr 𝐵
6 xpord2ind.5 . 2 𝑆 Po 𝐵
7 xpord2ind.6 . 2 𝑆 Se 𝐵
8 xpord2ind.7 . 2 (𝑎 = 𝑐 → (𝜑𝜓))
9 xpord2ind.8 . 2 (𝑏 = 𝑑 → (𝜓𝜒))
10 xpord2ind.9 . 2 (𝑎 = 𝑐 → (𝜃𝜒))
11 xpord2ind.11 . 2 (𝑎 = 𝑋 → (𝜑𝜏))
12 xpord2ind.12 . 2 (𝑏 = 𝑌 → (𝜏𝜂))
13 xpord2ind.i . 2 ((𝑎𝐴𝑏𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13xpord2indlem 8133 1 ((𝑋𝐴𝑌𝐵) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062   class class class wbr 5149  {copab 5211   Po wpo 5587   Fr wfr 5629   Se wse 5630   × cxp 5675  Predcpred 6300  cfv 6544  1st c1st 7973  2nd c2nd 7974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-fr 5632  df-se 5633  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-iota 6496  df-fun 6546  df-fv 6552  df-1st 7975  df-2nd 7976
This theorem is referenced by:  on2ind  8668  no2indslem  27438
  Copyright terms: Public domain W3C validator