| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpord2ind | Structured version Visualization version GIF version | ||
| Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| xpord2ind.1 | ⊢ 𝑅 Fr 𝐴 |
| xpord2ind.2 | ⊢ 𝑅 Po 𝐴 |
| xpord2ind.3 | ⊢ 𝑅 Se 𝐴 |
| xpord2ind.4 | ⊢ 𝑆 Fr 𝐵 |
| xpord2ind.5 | ⊢ 𝑆 Po 𝐵 |
| xpord2ind.6 | ⊢ 𝑆 Se 𝐵 |
| xpord2ind.7 | ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) |
| xpord2ind.8 | ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) |
| xpord2ind.9 | ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) |
| xpord2ind.11 | ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) |
| xpord2ind.12 | ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) |
| xpord2ind.i | ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑)) |
| Ref | Expression |
|---|---|
| xpord2ind | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | |
| 2 | xpord2ind.1 | . 2 ⊢ 𝑅 Fr 𝐴 | |
| 3 | xpord2ind.2 | . 2 ⊢ 𝑅 Po 𝐴 | |
| 4 | xpord2ind.3 | . 2 ⊢ 𝑅 Se 𝐴 | |
| 5 | xpord2ind.4 | . 2 ⊢ 𝑆 Fr 𝐵 | |
| 6 | xpord2ind.5 | . 2 ⊢ 𝑆 Po 𝐵 | |
| 7 | xpord2ind.6 | . 2 ⊢ 𝑆 Se 𝐵 | |
| 8 | xpord2ind.7 | . 2 ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) | |
| 9 | xpord2ind.8 | . 2 ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) | |
| 10 | xpord2ind.9 | . 2 ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) | |
| 11 | xpord2ind.11 | . 2 ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) | |
| 12 | xpord2ind.12 | . 2 ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) | |
| 13 | xpord2ind.i | . 2 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑)) | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | xpord2indlem 8146 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 class class class wbr 5119 {copab 5181 Po wpo 5559 Fr wfr 5603 Se wse 5604 × cxp 5652 Predcpred 6289 ‘cfv 6531 1st c1st 7986 2nd c2nd 7987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-fr 5606 df-se 5607 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fun 6533 df-fv 6539 df-1st 7988 df-2nd 7989 |
| This theorem is referenced by: on2ind 8681 no2indslem 27913 |
| Copyright terms: Public domain | W3C validator |