MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpord2ind Structured version   Visualization version   GIF version

Theorem xpord2ind 8189
Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024.)
Hypotheses
Ref Expression
xpord2ind.1 𝑅 Fr 𝐴
xpord2ind.2 𝑅 Po 𝐴
xpord2ind.3 𝑅 Se 𝐴
xpord2ind.4 𝑆 Fr 𝐵
xpord2ind.5 𝑆 Po 𝐵
xpord2ind.6 𝑆 Se 𝐵
xpord2ind.7 (𝑎 = 𝑐 → (𝜑𝜓))
xpord2ind.8 (𝑏 = 𝑑 → (𝜓𝜒))
xpord2ind.9 (𝑎 = 𝑐 → (𝜃𝜒))
xpord2ind.11 (𝑎 = 𝑋 → (𝜑𝜏))
xpord2ind.12 (𝑏 = 𝑌 → (𝜏𝜂))
xpord2ind.i ((𝑎𝐴𝑏𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑))
Assertion
Ref Expression
xpord2ind ((𝑋𝐴𝑌𝐵) → 𝜂)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑   𝜓,𝑎   𝜏,𝑎   𝐵,𝑎,𝑏,𝑐,𝑑   𝜒,𝑏   𝜂,𝑏   𝜑,𝑐   𝜃,𝑐   𝜓,𝑑   𝑅,𝑎,𝑏,𝑐,𝑑   𝑆,𝑎,𝑏,𝑐,𝑑   𝑋,𝑎,𝑏   𝑌,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏,𝑑)   𝜓(𝑏,𝑐)   𝜒(𝑎,𝑐,𝑑)   𝜃(𝑎,𝑏,𝑑)   𝜏(𝑏,𝑐,𝑑)   𝜂(𝑎,𝑐,𝑑)   𝑋(𝑐,𝑑)   𝑌(𝑎,𝑐,𝑑)

Proof of Theorem xpord2ind
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
2 xpord2ind.1 . 2 𝑅 Fr 𝐴
3 xpord2ind.2 . 2 𝑅 Po 𝐴
4 xpord2ind.3 . 2 𝑅 Se 𝐴
5 xpord2ind.4 . 2 𝑆 Fr 𝐵
6 xpord2ind.5 . 2 𝑆 Po 𝐵
7 xpord2ind.6 . 2 𝑆 Se 𝐵
8 xpord2ind.7 . 2 (𝑎 = 𝑐 → (𝜑𝜓))
9 xpord2ind.8 . 2 (𝑏 = 𝑑 → (𝜓𝜒))
10 xpord2ind.9 . 2 (𝑎 = 𝑐 → (𝜃𝜒))
11 xpord2ind.11 . 2 (𝑎 = 𝑋 → (𝜑𝜏))
12 xpord2ind.12 . 2 (𝑏 = 𝑌 → (𝜏𝜂))
13 xpord2ind.i . 2 ((𝑎𝐴𝑏𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑))
141, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13xpord2indlem 8188 1 ((𝑋𝐴𝑌𝐵) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067   class class class wbr 5166  {copab 5228   Po wpo 5605   Fr wfr 5649   Se wse 5650   × cxp 5698  Predcpred 6331  cfv 6573  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-fr 5652  df-se 5653  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fv 6581  df-1st 8030  df-2nd 8031
This theorem is referenced by:  on2ind  8725  no2indslem  28005
  Copyright terms: Public domain W3C validator