| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpord2ind | Structured version Visualization version GIF version | ||
| Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| xpord2ind.1 | ⊢ 𝑅 Fr 𝐴 |
| xpord2ind.2 | ⊢ 𝑅 Po 𝐴 |
| xpord2ind.3 | ⊢ 𝑅 Se 𝐴 |
| xpord2ind.4 | ⊢ 𝑆 Fr 𝐵 |
| xpord2ind.5 | ⊢ 𝑆 Po 𝐵 |
| xpord2ind.6 | ⊢ 𝑆 Se 𝐵 |
| xpord2ind.7 | ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) |
| xpord2ind.8 | ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) |
| xpord2ind.9 | ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) |
| xpord2ind.11 | ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) |
| xpord2ind.12 | ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) |
| xpord2ind.i | ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑)) |
| Ref | Expression |
|---|---|
| xpord2ind | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st ‘𝑥)𝑅(1st ‘𝑦) ∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥)𝑆(2nd ‘𝑦) ∨ (2nd ‘𝑥) = (2nd ‘𝑦)) ∧ 𝑥 ≠ 𝑦))} | |
| 2 | xpord2ind.1 | . 2 ⊢ 𝑅 Fr 𝐴 | |
| 3 | xpord2ind.2 | . 2 ⊢ 𝑅 Po 𝐴 | |
| 4 | xpord2ind.3 | . 2 ⊢ 𝑅 Se 𝐴 | |
| 5 | xpord2ind.4 | . 2 ⊢ 𝑆 Fr 𝐵 | |
| 6 | xpord2ind.5 | . 2 ⊢ 𝑆 Po 𝐵 | |
| 7 | xpord2ind.6 | . 2 ⊢ 𝑆 Se 𝐵 | |
| 8 | xpord2ind.7 | . 2 ⊢ (𝑎 = 𝑐 → (𝜑 ↔ 𝜓)) | |
| 9 | xpord2ind.8 | . 2 ⊢ (𝑏 = 𝑑 → (𝜓 ↔ 𝜒)) | |
| 10 | xpord2ind.9 | . 2 ⊢ (𝑎 = 𝑐 → (𝜃 ↔ 𝜒)) | |
| 11 | xpord2ind.11 | . 2 ⊢ (𝑎 = 𝑋 → (𝜑 ↔ 𝜏)) | |
| 12 | xpord2ind.12 | . 2 ⊢ (𝑏 = 𝑌 → (𝜏 ↔ 𝜂)) | |
| 13 | xpord2ind.i | . 2 ⊢ ((𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑)) | |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 | xpord2indlem 8103 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 class class class wbr 5102 {copab 5164 Po wpo 5537 Fr wfr 5581 Se wse 5582 × cxp 5629 Predcpred 6261 ‘cfv 6499 1st c1st 7945 2nd c2nd 7946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-fr 5584 df-se 5585 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-iota 6452 df-fun 6501 df-fv 6507 df-1st 7947 df-2nd 7948 |
| This theorem is referenced by: on2ind 8610 no2indslem 27837 |
| Copyright terms: Public domain | W3C validator |