Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpord2ind Structured version   Visualization version   GIF version

Theorem xpord2ind 33794
Description: Induction over the cross product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024.)
Hypotheses
Ref Expression
xpord2.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
xpord2ind.1 𝑅 Fr 𝐴
xpord2ind.2 𝑅 Po 𝐴
xpord2ind.3 𝑅 Se 𝐴
xpord2ind.4 𝑆 Fr 𝐵
xpord2ind.5 𝑆 Po 𝐵
xpord2ind.6 𝑆 Se 𝐵
xpord2ind.7 (𝑎 = 𝑐 → (𝜑𝜓))
xpord2ind.8 (𝑏 = 𝑑 → (𝜓𝜒))
xpord2ind.9 (𝑎 = 𝑐 → (𝜃𝜒))
xpord2ind.11 (𝑎 = 𝑋 → (𝜑𝜏))
xpord2ind.12 (𝑏 = 𝑌 → (𝜏𝜂))
xpord2ind.i ((𝑎𝐴𝑏𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑))
Assertion
Ref Expression
xpord2ind ((𝑋𝐴𝑌𝐵) → 𝜂)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑   𝜓,𝑎   𝜏,𝑎   𝑥,𝐴,𝑦   𝐵,𝑎,𝑏,𝑐   𝜒,𝑏   𝑏,𝑑,𝐵   𝜂,𝑏   𝑥,𝐵,𝑦   𝑐,𝑑   𝜑,𝑐   𝜃,𝑐   𝜓,𝑑   𝑅,𝑐,𝑑   𝑥,𝑅,𝑦   𝑆,𝑐,𝑑   𝑥,𝑆,𝑦   𝑇,𝑎,𝑏,𝑐,𝑑   𝑋,𝑎,𝑏   𝑥,𝑦   𝑌,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏,𝑑)   𝜓(𝑥,𝑦,𝑏,𝑐)   𝜒(𝑥,𝑦,𝑎,𝑐,𝑑)   𝜃(𝑥,𝑦,𝑎,𝑏,𝑑)   𝜏(𝑥,𝑦,𝑏,𝑐,𝑑)   𝜂(𝑥,𝑦,𝑎,𝑐,𝑑)   𝑅(𝑎,𝑏)   𝑆(𝑎,𝑏)   𝑇(𝑥,𝑦)   𝑋(𝑥,𝑦,𝑐,𝑑)   𝑌(𝑥,𝑦,𝑎,𝑐,𝑑)

Proof of Theorem xpord2ind
StepHypRef Expression
1 xpord2.1 . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (𝐴 × 𝐵) ∧ 𝑦 ∈ (𝐴 × 𝐵) ∧ (((1st𝑥)𝑅(1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥)𝑆(2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}
2 xpord2ind.1 . . . . . 6 𝑅 Fr 𝐴
32a1i 11 . . . . 5 (⊤ → 𝑅 Fr 𝐴)
4 xpord2ind.4 . . . . . 6 𝑆 Fr 𝐵
54a1i 11 . . . . 5 (⊤ → 𝑆 Fr 𝐵)
61, 3, 5frxp2 33791 . . . 4 (⊤ → 𝑇 Fr (𝐴 × 𝐵))
7 xpord2ind.2 . . . . . 6 𝑅 Po 𝐴
87a1i 11 . . . . 5 (⊤ → 𝑅 Po 𝐴)
9 xpord2ind.5 . . . . . 6 𝑆 Po 𝐵
109a1i 11 . . . . 5 (⊤ → 𝑆 Po 𝐵)
111, 8, 10poxp2 33790 . . . 4 (⊤ → 𝑇 Po (𝐴 × 𝐵))
12 xpord2ind.3 . . . . . 6 𝑅 Se 𝐴
1312a1i 11 . . . . 5 (⊤ → 𝑅 Se 𝐴)
14 xpord2ind.6 . . . . . 6 𝑆 Se 𝐵
1514a1i 11 . . . . 5 (⊤ → 𝑆 Se 𝐵)
161, 13, 15sexp2 33793 . . . 4 (⊤ → 𝑇 Se (𝐴 × 𝐵))
176, 11, 163jca 1127 . . 3 (⊤ → (𝑇 Fr (𝐴 × 𝐵) ∧ 𝑇 Po (𝐴 × 𝐵) ∧ 𝑇 Se (𝐴 × 𝐵)))
1817mptru 1546 . 2 (𝑇 Fr (𝐴 × 𝐵) ∧ 𝑇 Po (𝐴 × 𝐵) ∧ 𝑇 Se (𝐴 × 𝐵))
191xpord2pred 33792 . . . . . . . . 9 ((𝑎𝐴𝑏𝐵) → Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) = (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}))
2019eleq2d 2824 . . . . . . . 8 ((𝑎𝐴𝑏𝐵) → (⟨𝑐, 𝑑⟩ ∈ Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) ↔ ⟨𝑐, 𝑑⟩ ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩})))
2120imbi1d 342 . . . . . . 7 ((𝑎𝐴𝑏𝐵) → ((⟨𝑐, 𝑑⟩ ∈ Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) → 𝜒) ↔ (⟨𝑐, 𝑑⟩ ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}) → 𝜒)))
22 eldif 3897 . . . . . . . . . 10 (⟨𝑐, 𝑑⟩ ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}) ↔ (⟨𝑐, 𝑑⟩ ∈ ((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∧ ¬ ⟨𝑐, 𝑑⟩ ∈ {⟨𝑎, 𝑏⟩}))
23 opelxp 5625 . . . . . . . . . . 11 (⟨𝑐, 𝑑⟩ ∈ ((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ↔ (𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})))
24 opex 5379 . . . . . . . . . . . . . 14 𝑐, 𝑑⟩ ∈ V
2524elsn 4576 . . . . . . . . . . . . 13 (⟨𝑐, 𝑑⟩ ∈ {⟨𝑎, 𝑏⟩} ↔ ⟨𝑐, 𝑑⟩ = ⟨𝑎, 𝑏⟩)
2625notbii 320 . . . . . . . . . . . 12 (¬ ⟨𝑐, 𝑑⟩ ∈ {⟨𝑎, 𝑏⟩} ↔ ¬ ⟨𝑐, 𝑑⟩ = ⟨𝑎, 𝑏⟩)
27 df-ne 2944 . . . . . . . . . . . 12 (⟨𝑐, 𝑑⟩ ≠ ⟨𝑎, 𝑏⟩ ↔ ¬ ⟨𝑐, 𝑑⟩ = ⟨𝑎, 𝑏⟩)
28 vex 3436 . . . . . . . . . . . . 13 𝑐 ∈ V
29 vex 3436 . . . . . . . . . . . . 13 𝑑 ∈ V
3028, 29opthne 5397 . . . . . . . . . . . 12 (⟨𝑐, 𝑑⟩ ≠ ⟨𝑎, 𝑏⟩ ↔ (𝑐𝑎𝑑𝑏))
3126, 27, 303bitr2i 299 . . . . . . . . . . 11 (¬ ⟨𝑐, 𝑑⟩ ∈ {⟨𝑎, 𝑏⟩} ↔ (𝑐𝑎𝑑𝑏))
3223, 31anbi12i 627 . . . . . . . . . 10 ((⟨𝑐, 𝑑⟩ ∈ ((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∧ ¬ ⟨𝑐, 𝑑⟩ ∈ {⟨𝑎, 𝑏⟩}) ↔ ((𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∧ (𝑐𝑎𝑑𝑏)))
3322, 32bitri 274 . . . . . . . . 9 (⟨𝑐, 𝑑⟩ ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}) ↔ ((𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∧ (𝑐𝑎𝑑𝑏)))
3433imbi1i 350 . . . . . . . 8 ((⟨𝑐, 𝑑⟩ ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}) → 𝜒) ↔ (((𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∧ (𝑐𝑎𝑑𝑏)) → 𝜒))
35 impexp 451 . . . . . . . 8 ((((𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∧ (𝑐𝑎𝑑𝑏)) → 𝜒) ↔ ((𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) → ((𝑐𝑎𝑑𝑏) → 𝜒)))
3634, 35bitri 274 . . . . . . 7 ((⟨𝑐, 𝑑⟩ ∈ (((Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) × (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) ∖ {⟨𝑎, 𝑏⟩}) → 𝜒) ↔ ((𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) → ((𝑐𝑎𝑑𝑏) → 𝜒)))
3721, 36bitrdi 287 . . . . . 6 ((𝑎𝐴𝑏𝐵) → ((⟨𝑐, 𝑑⟩ ∈ Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) → 𝜒) ↔ ((𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) → ((𝑐𝑎𝑑𝑏) → 𝜒))))
38372albidv 1926 . . . . 5 ((𝑎𝐴𝑏𝐵) → (∀𝑐𝑑(⟨𝑐, 𝑑⟩ ∈ Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) → 𝜒) ↔ ∀𝑐𝑑((𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) → ((𝑐𝑎𝑑𝑏) → 𝜒))))
39 r2al 3118 . . . . 5 (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) ↔ ∀𝑐𝑑((𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) ∧ 𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})) → ((𝑐𝑎𝑑𝑏) → 𝜒)))
4038, 39bitr4di 289 . . . 4 ((𝑎𝐴𝑏𝐵) → (∀𝑐𝑑(⟨𝑐, 𝑑⟩ ∈ Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) → 𝜒) ↔ ∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒)))
41 ssun1 4106 . . . . . . . . 9 Pred(𝑅, 𝐴, 𝑎) ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})
42 ssralv 3987 . . . . . . . . 9 (Pred(𝑅, 𝐴, 𝑎) ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒)))
4341, 42ax-mp 5 . . . . . . . 8 (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒))
44 ssun1 4106 . . . . . . . . . 10 Pred(𝑆, 𝐵, 𝑏) ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})
45 ssralv 3987 . . . . . . . . . 10 (Pred(𝑆, 𝐵, 𝑏) ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) → (∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑐𝑎𝑑𝑏) → 𝜒)))
4644, 45ax-mp 5 . . . . . . . . 9 (∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑐𝑎𝑑𝑏) → 𝜒))
4746ralimi 3087 . . . . . . . 8 (∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑐𝑎𝑑𝑏) → 𝜒))
4843, 47syl 17 . . . . . . 7 (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑐𝑎𝑑𝑏) → 𝜒))
49 predpoirr 6236 . . . . . . . . . . . . . 14 (𝑆 Po 𝐵 → ¬ 𝑏 ∈ Pred(𝑆, 𝐵, 𝑏))
509, 49ax-mp 5 . . . . . . . . . . . . 13 ¬ 𝑏 ∈ Pred(𝑆, 𝐵, 𝑏)
51 eleq1w 2821 . . . . . . . . . . . . 13 (𝑑 = 𝑏 → (𝑑 ∈ Pred(𝑆, 𝐵, 𝑏) ↔ 𝑏 ∈ Pred(𝑆, 𝐵, 𝑏)))
5250, 51mtbiri 327 . . . . . . . . . . . 12 (𝑑 = 𝑏 → ¬ 𝑑 ∈ Pred(𝑆, 𝐵, 𝑏))
5352necon2ai 2973 . . . . . . . . . . 11 (𝑑 ∈ Pred(𝑆, 𝐵, 𝑏) → 𝑑𝑏)
5453olcd 871 . . . . . . . . . 10 (𝑑 ∈ Pred(𝑆, 𝐵, 𝑏) → (𝑐𝑎𝑑𝑏))
55 pm2.27 42 . . . . . . . . . 10 ((𝑐𝑎𝑑𝑏) → (((𝑐𝑎𝑑𝑏) → 𝜒) → 𝜒))
5654, 55syl 17 . . . . . . . . 9 (𝑑 ∈ Pred(𝑆, 𝐵, 𝑏) → (((𝑐𝑎𝑑𝑏) → 𝜒) → 𝜒))
5756ralimia 3085 . . . . . . . 8 (∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒)
5857ralimi 3087 . . . . . . 7 (∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒)
5948, 58syl 17 . . . . . 6 (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒)
60 ssun2 4107 . . . . . . . . . . 11 {𝑏} ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})
61 ssralv 3987 . . . . . . . . . . 11 ({𝑏} ⊆ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏}) → (∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑑 ∈ {𝑏} ((𝑐𝑎𝑑𝑏) → 𝜒)))
6260, 61ax-mp 5 . . . . . . . . . 10 (∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑑 ∈ {𝑏} ((𝑐𝑎𝑑𝑏) → 𝜒))
6362ralimi 3087 . . . . . . . . 9 (∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ {𝑏} ((𝑐𝑎𝑑𝑏) → 𝜒))
6443, 63syl 17 . . . . . . . 8 (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ {𝑏} ((𝑐𝑎𝑑𝑏) → 𝜒))
65 vex 3436 . . . . . . . . . 10 𝑏 ∈ V
66 neeq1 3006 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (𝑑𝑏𝑏𝑏))
6766orbi2d 913 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((𝑐𝑎𝑑𝑏) ↔ (𝑐𝑎𝑏𝑏)))
68 xpord2ind.8 . . . . . . . . . . . . 13 (𝑏 = 𝑑 → (𝜓𝜒))
6968equcoms 2023 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (𝜓𝜒))
7069bicomd 222 . . . . . . . . . . 11 (𝑑 = 𝑏 → (𝜒𝜓))
7167, 70imbi12d 345 . . . . . . . . . 10 (𝑑 = 𝑏 → (((𝑐𝑎𝑑𝑏) → 𝜒) ↔ ((𝑐𝑎𝑏𝑏) → 𝜓)))
7265, 71ralsn 4617 . . . . . . . . 9 (∀𝑑 ∈ {𝑏} ((𝑐𝑎𝑑𝑏) → 𝜒) ↔ ((𝑐𝑎𝑏𝑏) → 𝜓))
7372ralbii 3092 . . . . . . . 8 (∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ {𝑏} ((𝑐𝑎𝑑𝑏) → 𝜒) ↔ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑐𝑎𝑏𝑏) → 𝜓))
7464, 73sylib 217 . . . . . . 7 (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑐𝑎𝑏𝑏) → 𝜓))
75 predpoirr 6236 . . . . . . . . . . . . 13 (𝑅 Po 𝐴 → ¬ 𝑎 ∈ Pred(𝑅, 𝐴, 𝑎))
767, 75ax-mp 5 . . . . . . . . . . . 12 ¬ 𝑎 ∈ Pred(𝑅, 𝐴, 𝑎)
77 eleq1w 2821 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑐 ∈ Pred(𝑅, 𝐴, 𝑎) ↔ 𝑎 ∈ Pred(𝑅, 𝐴, 𝑎)))
7876, 77mtbiri 327 . . . . . . . . . . 11 (𝑐 = 𝑎 → ¬ 𝑐 ∈ Pred(𝑅, 𝐴, 𝑎))
7978necon2ai 2973 . . . . . . . . . 10 (𝑐 ∈ Pred(𝑅, 𝐴, 𝑎) → 𝑐𝑎)
8079orcd 870 . . . . . . . . 9 (𝑐 ∈ Pred(𝑅, 𝐴, 𝑎) → (𝑐𝑎𝑏𝑏))
81 pm2.27 42 . . . . . . . . 9 ((𝑐𝑎𝑏𝑏) → (((𝑐𝑎𝑏𝑏) → 𝜓) → 𝜓))
8280, 81syl 17 . . . . . . . 8 (𝑐 ∈ Pred(𝑅, 𝐴, 𝑎) → (((𝑐𝑎𝑏𝑏) → 𝜓) → 𝜓))
8382ralimia 3085 . . . . . . 7 (∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)((𝑐𝑎𝑏𝑏) → 𝜓) → ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓)
8474, 83syl 17 . . . . . 6 (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓)
85 ssun2 4107 . . . . . . . . . 10 {𝑎} ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})
86 ssralv 3987 . . . . . . . . . 10 ({𝑎} ⊆ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎}) → (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ {𝑎}∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒)))
8785, 86ax-mp 5 . . . . . . . . 9 (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ {𝑎}∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒))
8846ralimi 3087 . . . . . . . . 9 (∀𝑐 ∈ {𝑎}∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ {𝑎}∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑐𝑎𝑑𝑏) → 𝜒))
8987, 88syl 17 . . . . . . . 8 (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑐 ∈ {𝑎}∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑐𝑎𝑑𝑏) → 𝜒))
90 vex 3436 . . . . . . . . 9 𝑎 ∈ V
91 neeq1 3006 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝑐𝑎𝑎𝑎))
9291orbi1d 914 . . . . . . . . . . 11 (𝑐 = 𝑎 → ((𝑐𝑎𝑑𝑏) ↔ (𝑎𝑎𝑑𝑏)))
93 xpord2ind.9 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → (𝜃𝜒))
9493equcoms 2023 . . . . . . . . . . . 12 (𝑐 = 𝑎 → (𝜃𝜒))
9594bicomd 222 . . . . . . . . . . 11 (𝑐 = 𝑎 → (𝜒𝜃))
9692, 95imbi12d 345 . . . . . . . . . 10 (𝑐 = 𝑎 → (((𝑐𝑎𝑑𝑏) → 𝜒) ↔ ((𝑎𝑎𝑑𝑏) → 𝜃)))
9796ralbidv 3112 . . . . . . . . 9 (𝑐 = 𝑎 → (∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑐𝑎𝑑𝑏) → 𝜒) ↔ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎𝑎𝑑𝑏) → 𝜃)))
9890, 97ralsn 4617 . . . . . . . 8 (∀𝑐 ∈ {𝑎}∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑐𝑎𝑑𝑏) → 𝜒) ↔ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎𝑎𝑑𝑏) → 𝜃))
9989, 98sylib 217 . . . . . . 7 (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎𝑎𝑑𝑏) → 𝜃))
10053olcd 871 . . . . . . . . 9 (𝑑 ∈ Pred(𝑆, 𝐵, 𝑏) → (𝑎𝑎𝑑𝑏))
101 pm2.27 42 . . . . . . . . 9 ((𝑎𝑎𝑑𝑏) → (((𝑎𝑎𝑑𝑏) → 𝜃) → 𝜃))
102100, 101syl 17 . . . . . . . 8 (𝑑 ∈ Pred(𝑆, 𝐵, 𝑏) → (((𝑎𝑎𝑑𝑏) → 𝜃) → 𝜃))
103102ralimia 3085 . . . . . . 7 (∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)((𝑎𝑎𝑑𝑏) → 𝜃) → ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃)
10499, 103syl 17 . . . . . 6 (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃)
10559, 84, 1043jca 1127 . . . . 5 (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → (∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃))
106 xpord2ind.i . . . . 5 ((𝑎𝐴𝑏𝐵) → ((∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜒 ∧ ∀𝑐 ∈ Pred (𝑅, 𝐴, 𝑎)𝜓 ∧ ∀𝑑 ∈ Pred (𝑆, 𝐵, 𝑏)𝜃) → 𝜑))
107105, 106syl5 34 . . . 4 ((𝑎𝐴𝑏𝐵) → (∀𝑐 ∈ (Pred(𝑅, 𝐴, 𝑎) ∪ {𝑎})∀𝑑 ∈ (Pred(𝑆, 𝐵, 𝑏) ∪ {𝑏})((𝑐𝑎𝑑𝑏) → 𝜒) → 𝜑))
10840, 107sylbid 239 . . 3 ((𝑎𝐴𝑏𝐵) → (∀𝑐𝑑(⟨𝑐, 𝑑⟩ ∈ Pred(𝑇, (𝐴 × 𝐵), ⟨𝑎, 𝑏⟩) → 𝜒) → 𝜑))
109 xpord2ind.7 . . 3 (𝑎 = 𝑐 → (𝜑𝜓))
110 xpord2ind.11 . . 3 (𝑎 = 𝑋 → (𝜑𝜏))
111 xpord2ind.12 . . 3 (𝑏 = 𝑌 → (𝜏𝜂))
112108, 109, 68, 110, 111frpoins3xpg 33787 . 2 (((𝑇 Fr (𝐴 × 𝐵) ∧ 𝑇 Po (𝐴 × 𝐵) ∧ 𝑇 Se (𝐴 × 𝐵)) ∧ (𝑋𝐴𝑌𝐵)) → 𝜂)
11318, 112mpan 687 1 ((𝑋𝐴𝑌𝐵) → 𝜂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086  wal 1537   = wceq 1539  wtru 1540  wcel 2106  wne 2943  wral 3064  cdif 3884  cun 3885  wss 3887  {csn 4561  cop 4567   class class class wbr 5074  {copab 5136   Po wpo 5501   Fr wfr 5541   Se wse 5542   × cxp 5587  Predcpred 6201  cfv 6433  1st c1st 7829  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-fr 5544  df-se 5545  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-fun 6435  df-fv 6441  df-1st 7831  df-2nd 7832
This theorem is referenced by:  on2ind  33828  no2indslem  34111
  Copyright terms: Public domain W3C validator