MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonval Structured version   Visualization version   GIF version

Theorem yonval 18224
Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
yonval.y π‘Œ = (Yonβ€˜πΆ)
yonval.c (πœ‘ β†’ 𝐢 ∈ Cat)
yonval.o 𝑂 = (oppCatβ€˜πΆ)
yonval.m 𝑀 = (HomFβ€˜π‘‚)
Assertion
Ref Expression
yonval (πœ‘ β†’ π‘Œ = (⟨𝐢, π‘‚βŸ© curryF 𝑀))

Proof of Theorem yonval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 yonval.y . 2 π‘Œ = (Yonβ€˜πΆ)
2 df-yon 18214 . . 3 Yon = (𝑐 ∈ Cat ↦ (βŸ¨π‘, (oppCatβ€˜π‘)⟩ curryF (HomFβ€˜(oppCatβ€˜π‘))))
3 simpr 484 . . . . 5 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ 𝑐 = 𝐢)
43fveq2d 6888 . . . . . 6 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ (oppCatβ€˜π‘) = (oppCatβ€˜πΆ))
5 yonval.o . . . . . 6 𝑂 = (oppCatβ€˜πΆ)
64, 5eqtr4di 2784 . . . . 5 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ (oppCatβ€˜π‘) = 𝑂)
73, 6opeq12d 4876 . . . 4 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ βŸ¨π‘, (oppCatβ€˜π‘)⟩ = ⟨𝐢, π‘‚βŸ©)
86fveq2d 6888 . . . . 5 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ (HomFβ€˜(oppCatβ€˜π‘)) = (HomFβ€˜π‘‚))
9 yonval.m . . . . 5 𝑀 = (HomFβ€˜π‘‚)
108, 9eqtr4di 2784 . . . 4 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ (HomFβ€˜(oppCatβ€˜π‘)) = 𝑀)
117, 10oveq12d 7422 . . 3 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ (βŸ¨π‘, (oppCatβ€˜π‘)⟩ curryF (HomFβ€˜(oppCatβ€˜π‘))) = (⟨𝐢, π‘‚βŸ© curryF 𝑀))
12 yonval.c . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
13 ovexd 7439 . . 3 (πœ‘ β†’ (⟨𝐢, π‘‚βŸ© curryF 𝑀) ∈ V)
142, 11, 12, 13fvmptd2 6999 . 2 (πœ‘ β†’ (Yonβ€˜πΆ) = (⟨𝐢, π‘‚βŸ© curryF 𝑀))
151, 14eqtrid 2778 1 (πœ‘ β†’ π‘Œ = (⟨𝐢, π‘‚βŸ© curryF 𝑀))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  Vcvv 3468  βŸ¨cop 4629  β€˜cfv 6536  (class class class)co 7404  Catccat 17615  oppCatcoppc 17662   curryF ccurf 18173  HomFchof 18211  Yoncyon 18212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-yon 18214
This theorem is referenced by:  yoncl  18225  yon11  18227  yon12  18228  yon2  18229  yonpropd  18231  oppcyon  18232
  Copyright terms: Public domain W3C validator