| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > yonval | Structured version Visualization version GIF version | ||
| Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| Ref | Expression |
|---|---|
| yonval.y | ⊢ 𝑌 = (Yon‘𝐶) |
| yonval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| yonval.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| yonval.m | ⊢ 𝑀 = (HomF‘𝑂) |
| Ref | Expression |
|---|---|
| yonval | ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | yonval.y | . 2 ⊢ 𝑌 = (Yon‘𝐶) | |
| 2 | df-yon 18159 | . . 3 ⊢ Yon = (𝑐 ∈ Cat ↦ (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐)))) | |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
| 4 | 3 | fveq2d 6832 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (oppCat‘𝑐) = (oppCat‘𝐶)) |
| 5 | yonval.o | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 6 | 4, 5 | eqtr4di 2786 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (oppCat‘𝑐) = 𝑂) |
| 7 | 3, 6 | opeq12d 4832 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 〈𝑐, (oppCat‘𝑐)〉 = 〈𝐶, 𝑂〉) |
| 8 | 6 | fveq2d 6832 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = (HomF‘𝑂)) |
| 9 | yonval.m | . . . . 5 ⊢ 𝑀 = (HomF‘𝑂) | |
| 10 | 8, 9 | eqtr4di 2786 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = 𝑀) |
| 11 | 7, 10 | oveq12d 7370 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐))) = (〈𝐶, 𝑂〉 curryF 𝑀)) |
| 12 | yonval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 13 | ovexd 7387 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝑂〉 curryF 𝑀) ∈ V) | |
| 14 | 2, 11, 12, 13 | fvmptd2 6943 | . 2 ⊢ (𝜑 → (Yon‘𝐶) = (〈𝐶, 𝑂〉 curryF 𝑀)) |
| 15 | 1, 14 | eqtrid 2780 | 1 ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4581 ‘cfv 6486 (class class class)co 7352 Catccat 17572 oppCatcoppc 17619 curryF ccurf 18118 HomFchof 18156 Yoncyon 18157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-yon 18159 |
| This theorem is referenced by: yoncl 18170 yon11 18172 yon12 18173 yon2 18174 yonpropd 18176 oppcyon 18177 |
| Copyright terms: Public domain | W3C validator |