| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > yonval | Structured version Visualization version GIF version | ||
| Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| Ref | Expression |
|---|---|
| yonval.y | ⊢ 𝑌 = (Yon‘𝐶) |
| yonval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| yonval.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| yonval.m | ⊢ 𝑀 = (HomF‘𝑂) |
| Ref | Expression |
|---|---|
| yonval | ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | yonval.y | . 2 ⊢ 𝑌 = (Yon‘𝐶) | |
| 2 | df-yon 18219 | . . 3 ⊢ Yon = (𝑐 ∈ Cat ↦ (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐)))) | |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
| 4 | 3 | fveq2d 6865 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (oppCat‘𝑐) = (oppCat‘𝐶)) |
| 5 | yonval.o | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 6 | 4, 5 | eqtr4di 2783 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (oppCat‘𝑐) = 𝑂) |
| 7 | 3, 6 | opeq12d 4848 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 〈𝑐, (oppCat‘𝑐)〉 = 〈𝐶, 𝑂〉) |
| 8 | 6 | fveq2d 6865 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = (HomF‘𝑂)) |
| 9 | yonval.m | . . . . 5 ⊢ 𝑀 = (HomF‘𝑂) | |
| 10 | 8, 9 | eqtr4di 2783 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = 𝑀) |
| 11 | 7, 10 | oveq12d 7408 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐))) = (〈𝐶, 𝑂〉 curryF 𝑀)) |
| 12 | yonval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 13 | ovexd 7425 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝑂〉 curryF 𝑀) ∈ V) | |
| 14 | 2, 11, 12, 13 | fvmptd2 6979 | . 2 ⊢ (𝜑 → (Yon‘𝐶) = (〈𝐶, 𝑂〉 curryF 𝑀)) |
| 15 | 1, 14 | eqtrid 2777 | 1 ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 ‘cfv 6514 (class class class)co 7390 Catccat 17632 oppCatcoppc 17679 curryF ccurf 18178 HomFchof 18216 Yoncyon 18217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-yon 18219 |
| This theorem is referenced by: yoncl 18230 yon11 18232 yon12 18233 yon2 18234 yonpropd 18236 oppcyon 18237 |
| Copyright terms: Public domain | W3C validator |