![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > yonval | Structured version Visualization version GIF version |
Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.) |
Ref | Expression |
---|---|
yonval.y | β’ π = (YonβπΆ) |
yonval.c | β’ (π β πΆ β Cat) |
yonval.o | β’ π = (oppCatβπΆ) |
yonval.m | β’ π = (HomFβπ) |
Ref | Expression |
---|---|
yonval | β’ (π β π = (β¨πΆ, πβ© curryF π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | yonval.y | . 2 β’ π = (YonβπΆ) | |
2 | df-yon 18214 | . . 3 β’ Yon = (π β Cat β¦ (β¨π, (oppCatβπ)β© curryF (HomFβ(oppCatβπ)))) | |
3 | simpr 484 | . . . . 5 β’ ((π β§ π = πΆ) β π = πΆ) | |
4 | 3 | fveq2d 6888 | . . . . . 6 β’ ((π β§ π = πΆ) β (oppCatβπ) = (oppCatβπΆ)) |
5 | yonval.o | . . . . . 6 β’ π = (oppCatβπΆ) | |
6 | 4, 5 | eqtr4di 2784 | . . . . 5 β’ ((π β§ π = πΆ) β (oppCatβπ) = π) |
7 | 3, 6 | opeq12d 4876 | . . . 4 β’ ((π β§ π = πΆ) β β¨π, (oppCatβπ)β© = β¨πΆ, πβ©) |
8 | 6 | fveq2d 6888 | . . . . 5 β’ ((π β§ π = πΆ) β (HomFβ(oppCatβπ)) = (HomFβπ)) |
9 | yonval.m | . . . . 5 β’ π = (HomFβπ) | |
10 | 8, 9 | eqtr4di 2784 | . . . 4 β’ ((π β§ π = πΆ) β (HomFβ(oppCatβπ)) = π) |
11 | 7, 10 | oveq12d 7422 | . . 3 β’ ((π β§ π = πΆ) β (β¨π, (oppCatβπ)β© curryF (HomFβ(oppCatβπ))) = (β¨πΆ, πβ© curryF π)) |
12 | yonval.c | . . 3 β’ (π β πΆ β Cat) | |
13 | ovexd 7439 | . . 3 β’ (π β (β¨πΆ, πβ© curryF π) β V) | |
14 | 2, 11, 12, 13 | fvmptd2 6999 | . 2 β’ (π β (YonβπΆ) = (β¨πΆ, πβ© curryF π)) |
15 | 1, 14 | eqtrid 2778 | 1 β’ (π β π = (β¨πΆ, πβ© curryF π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 Vcvv 3468 β¨cop 4629 βcfv 6536 (class class class)co 7404 Catccat 17615 oppCatcoppc 17662 curryF ccurf 18173 HomFchof 18211 Yoncyon 18212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-ov 7407 df-yon 18214 |
This theorem is referenced by: yoncl 18225 yon11 18227 yon12 18228 yon2 18229 yonpropd 18231 oppcyon 18232 |
Copyright terms: Public domain | W3C validator |