MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonval Structured version   Visualization version   GIF version

Theorem yonval 18214
Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
yonval.y π‘Œ = (Yonβ€˜πΆ)
yonval.c (πœ‘ β†’ 𝐢 ∈ Cat)
yonval.o 𝑂 = (oppCatβ€˜πΆ)
yonval.m 𝑀 = (HomFβ€˜π‘‚)
Assertion
Ref Expression
yonval (πœ‘ β†’ π‘Œ = (⟨𝐢, π‘‚βŸ© curryF 𝑀))

Proof of Theorem yonval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 yonval.y . 2 π‘Œ = (Yonβ€˜πΆ)
2 df-yon 18204 . . 3 Yon = (𝑐 ∈ Cat ↦ (βŸ¨π‘, (oppCatβ€˜π‘)⟩ curryF (HomFβ€˜(oppCatβ€˜π‘))))
3 simpr 486 . . . . 5 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ 𝑐 = 𝐢)
43fveq2d 6896 . . . . . 6 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ (oppCatβ€˜π‘) = (oppCatβ€˜πΆ))
5 yonval.o . . . . . 6 𝑂 = (oppCatβ€˜πΆ)
64, 5eqtr4di 2791 . . . . 5 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ (oppCatβ€˜π‘) = 𝑂)
73, 6opeq12d 4882 . . . 4 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ βŸ¨π‘, (oppCatβ€˜π‘)⟩ = ⟨𝐢, π‘‚βŸ©)
86fveq2d 6896 . . . . 5 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ (HomFβ€˜(oppCatβ€˜π‘)) = (HomFβ€˜π‘‚))
9 yonval.m . . . . 5 𝑀 = (HomFβ€˜π‘‚)
108, 9eqtr4di 2791 . . . 4 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ (HomFβ€˜(oppCatβ€˜π‘)) = 𝑀)
117, 10oveq12d 7427 . . 3 ((πœ‘ ∧ 𝑐 = 𝐢) β†’ (βŸ¨π‘, (oppCatβ€˜π‘)⟩ curryF (HomFβ€˜(oppCatβ€˜π‘))) = (⟨𝐢, π‘‚βŸ© curryF 𝑀))
12 yonval.c . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
13 ovexd 7444 . . 3 (πœ‘ β†’ (⟨𝐢, π‘‚βŸ© curryF 𝑀) ∈ V)
142, 11, 12, 13fvmptd2 7007 . 2 (πœ‘ β†’ (Yonβ€˜πΆ) = (⟨𝐢, π‘‚βŸ© curryF 𝑀))
151, 14eqtrid 2785 1 (πœ‘ β†’ π‘Œ = (⟨𝐢, π‘‚βŸ© curryF 𝑀))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3475  βŸ¨cop 4635  β€˜cfv 6544  (class class class)co 7409  Catccat 17608  oppCatcoppc 17655   curryF ccurf 18163  HomFchof 18201  Yoncyon 18202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-yon 18204
This theorem is referenced by:  yoncl  18215  yon11  18217  yon12  18218  yon2  18219  yonpropd  18221  oppcyon  18222
  Copyright terms: Public domain W3C validator