![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > yonval | Structured version Visualization version GIF version |
Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.) |
Ref | Expression |
---|---|
yonval.y | β’ π = (YonβπΆ) |
yonval.c | β’ (π β πΆ β Cat) |
yonval.o | β’ π = (oppCatβπΆ) |
yonval.m | β’ π = (HomFβπ) |
Ref | Expression |
---|---|
yonval | β’ (π β π = (β¨πΆ, πβ© curryF π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | yonval.y | . 2 β’ π = (YonβπΆ) | |
2 | df-yon 18204 | . . 3 β’ Yon = (π β Cat β¦ (β¨π, (oppCatβπ)β© curryF (HomFβ(oppCatβπ)))) | |
3 | simpr 486 | . . . . 5 β’ ((π β§ π = πΆ) β π = πΆ) | |
4 | 3 | fveq2d 6896 | . . . . . 6 β’ ((π β§ π = πΆ) β (oppCatβπ) = (oppCatβπΆ)) |
5 | yonval.o | . . . . . 6 β’ π = (oppCatβπΆ) | |
6 | 4, 5 | eqtr4di 2791 | . . . . 5 β’ ((π β§ π = πΆ) β (oppCatβπ) = π) |
7 | 3, 6 | opeq12d 4882 | . . . 4 β’ ((π β§ π = πΆ) β β¨π, (oppCatβπ)β© = β¨πΆ, πβ©) |
8 | 6 | fveq2d 6896 | . . . . 5 β’ ((π β§ π = πΆ) β (HomFβ(oppCatβπ)) = (HomFβπ)) |
9 | yonval.m | . . . . 5 β’ π = (HomFβπ) | |
10 | 8, 9 | eqtr4di 2791 | . . . 4 β’ ((π β§ π = πΆ) β (HomFβ(oppCatβπ)) = π) |
11 | 7, 10 | oveq12d 7427 | . . 3 β’ ((π β§ π = πΆ) β (β¨π, (oppCatβπ)β© curryF (HomFβ(oppCatβπ))) = (β¨πΆ, πβ© curryF π)) |
12 | yonval.c | . . 3 β’ (π β πΆ β Cat) | |
13 | ovexd 7444 | . . 3 β’ (π β (β¨πΆ, πβ© curryF π) β V) | |
14 | 2, 11, 12, 13 | fvmptd2 7007 | . 2 β’ (π β (YonβπΆ) = (β¨πΆ, πβ© curryF π)) |
15 | 1, 14 | eqtrid 2785 | 1 β’ (π β π = (β¨πΆ, πβ© curryF π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 Vcvv 3475 β¨cop 4635 βcfv 6544 (class class class)co 7409 Catccat 17608 oppCatcoppc 17655 curryF ccurf 18163 HomFchof 18201 Yoncyon 18202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-yon 18204 |
This theorem is referenced by: yoncl 18215 yon11 18217 yon12 18218 yon2 18219 yonpropd 18221 oppcyon 18222 |
Copyright terms: Public domain | W3C validator |