| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > yonval | Structured version Visualization version GIF version | ||
| Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| Ref | Expression |
|---|---|
| yonval.y | ⊢ 𝑌 = (Yon‘𝐶) |
| yonval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| yonval.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| yonval.m | ⊢ 𝑀 = (HomF‘𝑂) |
| Ref | Expression |
|---|---|
| yonval | ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | yonval.y | . 2 ⊢ 𝑌 = (Yon‘𝐶) | |
| 2 | df-yon 18154 | . . 3 ⊢ Yon = (𝑐 ∈ Cat ↦ (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐)))) | |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
| 4 | 3 | fveq2d 6826 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (oppCat‘𝑐) = (oppCat‘𝐶)) |
| 5 | yonval.o | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 6 | 4, 5 | eqtr4di 2784 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (oppCat‘𝑐) = 𝑂) |
| 7 | 3, 6 | opeq12d 4833 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 〈𝑐, (oppCat‘𝑐)〉 = 〈𝐶, 𝑂〉) |
| 8 | 6 | fveq2d 6826 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = (HomF‘𝑂)) |
| 9 | yonval.m | . . . . 5 ⊢ 𝑀 = (HomF‘𝑂) | |
| 10 | 8, 9 | eqtr4di 2784 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = 𝑀) |
| 11 | 7, 10 | oveq12d 7364 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐))) = (〈𝐶, 𝑂〉 curryF 𝑀)) |
| 12 | yonval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 13 | ovexd 7381 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝑂〉 curryF 𝑀) ∈ V) | |
| 14 | 2, 11, 12, 13 | fvmptd2 6937 | . 2 ⊢ (𝜑 → (Yon‘𝐶) = (〈𝐶, 𝑂〉 curryF 𝑀)) |
| 15 | 1, 14 | eqtrid 2778 | 1 ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4582 ‘cfv 6481 (class class class)co 7346 Catccat 17567 oppCatcoppc 17614 curryF ccurf 18113 HomFchof 18151 Yoncyon 18152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-yon 18154 |
| This theorem is referenced by: yoncl 18165 yon11 18167 yon12 18168 yon2 18169 yonpropd 18171 oppcyon 18172 |
| Copyright terms: Public domain | W3C validator |