MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonval Structured version   Visualization version   GIF version

Theorem yonval 18222
Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
yonval.y 𝑌 = (Yon‘𝐶)
yonval.c (𝜑𝐶 ∈ Cat)
yonval.o 𝑂 = (oppCat‘𝐶)
yonval.m 𝑀 = (HomF𝑂)
Assertion
Ref Expression
yonval (𝜑𝑌 = (⟨𝐶, 𝑂⟩ curryF 𝑀))

Proof of Theorem yonval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 yonval.y . 2 𝑌 = (Yon‘𝐶)
2 df-yon 18212 . . 3 Yon = (𝑐 ∈ Cat ↦ (⟨𝑐, (oppCat‘𝑐)⟩ curryF (HomF‘(oppCat‘𝑐))))
3 simpr 484 . . . . 5 ((𝜑𝑐 = 𝐶) → 𝑐 = 𝐶)
43fveq2d 6862 . . . . . 6 ((𝜑𝑐 = 𝐶) → (oppCat‘𝑐) = (oppCat‘𝐶))
5 yonval.o . . . . . 6 𝑂 = (oppCat‘𝐶)
64, 5eqtr4di 2782 . . . . 5 ((𝜑𝑐 = 𝐶) → (oppCat‘𝑐) = 𝑂)
73, 6opeq12d 4845 . . . 4 ((𝜑𝑐 = 𝐶) → ⟨𝑐, (oppCat‘𝑐)⟩ = ⟨𝐶, 𝑂⟩)
86fveq2d 6862 . . . . 5 ((𝜑𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = (HomF𝑂))
9 yonval.m . . . . 5 𝑀 = (HomF𝑂)
108, 9eqtr4di 2782 . . . 4 ((𝜑𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = 𝑀)
117, 10oveq12d 7405 . . 3 ((𝜑𝑐 = 𝐶) → (⟨𝑐, (oppCat‘𝑐)⟩ curryF (HomF‘(oppCat‘𝑐))) = (⟨𝐶, 𝑂⟩ curryF 𝑀))
12 yonval.c . . 3 (𝜑𝐶 ∈ Cat)
13 ovexd 7422 . . 3 (𝜑 → (⟨𝐶, 𝑂⟩ curryF 𝑀) ∈ V)
142, 11, 12, 13fvmptd2 6976 . 2 (𝜑 → (Yon‘𝐶) = (⟨𝐶, 𝑂⟩ curryF 𝑀))
151, 14eqtrid 2776 1 (𝜑𝑌 = (⟨𝐶, 𝑂⟩ curryF 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cop 4595  cfv 6511  (class class class)co 7387  Catccat 17625  oppCatcoppc 17672   curryF ccurf 18171  HomFchof 18209  Yoncyon 18210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-yon 18212
This theorem is referenced by:  yoncl  18223  yon11  18225  yon12  18226  yon2  18227  yonpropd  18229  oppcyon  18230
  Copyright terms: Public domain W3C validator