Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > yonval | Structured version Visualization version GIF version |
Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.) |
Ref | Expression |
---|---|
yonval.y | ⊢ 𝑌 = (Yon‘𝐶) |
yonval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
yonval.o | ⊢ 𝑂 = (oppCat‘𝐶) |
yonval.m | ⊢ 𝑀 = (HomF‘𝑂) |
Ref | Expression |
---|---|
yonval | ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | yonval.y | . 2 ⊢ 𝑌 = (Yon‘𝐶) | |
2 | df-yon 17969 | . . 3 ⊢ Yon = (𝑐 ∈ Cat ↦ (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐)))) | |
3 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
4 | 3 | fveq2d 6778 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (oppCat‘𝑐) = (oppCat‘𝐶)) |
5 | yonval.o | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
6 | 4, 5 | eqtr4di 2796 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (oppCat‘𝑐) = 𝑂) |
7 | 3, 6 | opeq12d 4812 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 〈𝑐, (oppCat‘𝑐)〉 = 〈𝐶, 𝑂〉) |
8 | 6 | fveq2d 6778 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = (HomF‘𝑂)) |
9 | yonval.m | . . . . 5 ⊢ 𝑀 = (HomF‘𝑂) | |
10 | 8, 9 | eqtr4di 2796 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = 𝑀) |
11 | 7, 10 | oveq12d 7293 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐))) = (〈𝐶, 𝑂〉 curryF 𝑀)) |
12 | yonval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
13 | ovexd 7310 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝑂〉 curryF 𝑀) ∈ V) | |
14 | 2, 11, 12, 13 | fvmptd2 6883 | . 2 ⊢ (𝜑 → (Yon‘𝐶) = (〈𝐶, 𝑂〉 curryF 𝑀)) |
15 | 1, 14 | eqtrid 2790 | 1 ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 ‘cfv 6433 (class class class)co 7275 Catccat 17373 oppCatcoppc 17420 curryF ccurf 17928 HomFchof 17966 Yoncyon 17967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-yon 17969 |
This theorem is referenced by: yoncl 17980 yon11 17982 yon12 17983 yon2 17984 yonpropd 17986 oppcyon 17987 |
Copyright terms: Public domain | W3C validator |