MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonval Structured version   Visualization version   GIF version

Theorem yonval 18164
Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
yonval.y 𝑌 = (Yon‘𝐶)
yonval.c (𝜑𝐶 ∈ Cat)
yonval.o 𝑂 = (oppCat‘𝐶)
yonval.m 𝑀 = (HomF𝑂)
Assertion
Ref Expression
yonval (𝜑𝑌 = (⟨𝐶, 𝑂⟩ curryF 𝑀))

Proof of Theorem yonval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 yonval.y . 2 𝑌 = (Yon‘𝐶)
2 df-yon 18154 . . 3 Yon = (𝑐 ∈ Cat ↦ (⟨𝑐, (oppCat‘𝑐)⟩ curryF (HomF‘(oppCat‘𝑐))))
3 simpr 484 . . . . 5 ((𝜑𝑐 = 𝐶) → 𝑐 = 𝐶)
43fveq2d 6826 . . . . . 6 ((𝜑𝑐 = 𝐶) → (oppCat‘𝑐) = (oppCat‘𝐶))
5 yonval.o . . . . . 6 𝑂 = (oppCat‘𝐶)
64, 5eqtr4di 2784 . . . . 5 ((𝜑𝑐 = 𝐶) → (oppCat‘𝑐) = 𝑂)
73, 6opeq12d 4833 . . . 4 ((𝜑𝑐 = 𝐶) → ⟨𝑐, (oppCat‘𝑐)⟩ = ⟨𝐶, 𝑂⟩)
86fveq2d 6826 . . . . 5 ((𝜑𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = (HomF𝑂))
9 yonval.m . . . . 5 𝑀 = (HomF𝑂)
108, 9eqtr4di 2784 . . . 4 ((𝜑𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = 𝑀)
117, 10oveq12d 7364 . . 3 ((𝜑𝑐 = 𝐶) → (⟨𝑐, (oppCat‘𝑐)⟩ curryF (HomF‘(oppCat‘𝑐))) = (⟨𝐶, 𝑂⟩ curryF 𝑀))
12 yonval.c . . 3 (𝜑𝐶 ∈ Cat)
13 ovexd 7381 . . 3 (𝜑 → (⟨𝐶, 𝑂⟩ curryF 𝑀) ∈ V)
142, 11, 12, 13fvmptd2 6937 . 2 (𝜑 → (Yon‘𝐶) = (⟨𝐶, 𝑂⟩ curryF 𝑀))
151, 14eqtrid 2778 1 (𝜑𝑌 = (⟨𝐶, 𝑂⟩ curryF 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4582  cfv 6481  (class class class)co 7346  Catccat 17567  oppCatcoppc 17614   curryF ccurf 18113  HomFchof 18151  Yoncyon 18152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-yon 18154
This theorem is referenced by:  yoncl  18165  yon11  18167  yon12  18168  yon2  18169  yonpropd  18171  oppcyon  18172
  Copyright terms: Public domain W3C validator