Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > yonval | Structured version Visualization version GIF version |
Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.) |
Ref | Expression |
---|---|
yonval.y | ⊢ 𝑌 = (Yon‘𝐶) |
yonval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
yonval.o | ⊢ 𝑂 = (oppCat‘𝐶) |
yonval.m | ⊢ 𝑀 = (HomF‘𝑂) |
Ref | Expression |
---|---|
yonval | ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | yonval.y | . 2 ⊢ 𝑌 = (Yon‘𝐶) | |
2 | df-yon 17885 | . . 3 ⊢ Yon = (𝑐 ∈ Cat ↦ (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐)))) | |
3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
4 | 3 | fveq2d 6760 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (oppCat‘𝑐) = (oppCat‘𝐶)) |
5 | yonval.o | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
6 | 4, 5 | eqtr4di 2797 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (oppCat‘𝑐) = 𝑂) |
7 | 3, 6 | opeq12d 4809 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 〈𝑐, (oppCat‘𝑐)〉 = 〈𝐶, 𝑂〉) |
8 | 6 | fveq2d 6760 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = (HomF‘𝑂)) |
9 | yonval.m | . . . . 5 ⊢ 𝑀 = (HomF‘𝑂) | |
10 | 8, 9 | eqtr4di 2797 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = 𝑀) |
11 | 7, 10 | oveq12d 7273 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐))) = (〈𝐶, 𝑂〉 curryF 𝑀)) |
12 | yonval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
13 | ovexd 7290 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝑂〉 curryF 𝑀) ∈ V) | |
14 | 2, 11, 12, 13 | fvmptd2 6865 | . 2 ⊢ (𝜑 → (Yon‘𝐶) = (〈𝐶, 𝑂〉 curryF 𝑀)) |
15 | 1, 14 | eqtrid 2790 | 1 ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 ‘cfv 6418 (class class class)co 7255 Catccat 17290 oppCatcoppc 17337 curryF ccurf 17844 HomFchof 17882 Yoncyon 17883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-yon 17885 |
This theorem is referenced by: yoncl 17896 yon11 17898 yon12 17899 yon2 17900 yonpropd 17902 oppcyon 17903 |
Copyright terms: Public domain | W3C validator |