![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > yonval | Structured version Visualization version GIF version |
Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.) |
Ref | Expression |
---|---|
yonval.y | ⊢ 𝑌 = (Yon‘𝐶) |
yonval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
yonval.o | ⊢ 𝑂 = (oppCat‘𝐶) |
yonval.m | ⊢ 𝑀 = (HomF‘𝑂) |
Ref | Expression |
---|---|
yonval | ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | yonval.y | . 2 ⊢ 𝑌 = (Yon‘𝐶) | |
2 | df-yon 18321 | . . 3 ⊢ Yon = (𝑐 ∈ Cat ↦ (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐)))) | |
3 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 𝑐 = 𝐶) | |
4 | 3 | fveq2d 6924 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (oppCat‘𝑐) = (oppCat‘𝐶)) |
5 | yonval.o | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
6 | 4, 5 | eqtr4di 2798 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (oppCat‘𝑐) = 𝑂) |
7 | 3, 6 | opeq12d 4905 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → 〈𝑐, (oppCat‘𝑐)〉 = 〈𝐶, 𝑂〉) |
8 | 6 | fveq2d 6924 | . . . . 5 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = (HomF‘𝑂)) |
9 | yonval.m | . . . . 5 ⊢ 𝑀 = (HomF‘𝑂) | |
10 | 8, 9 | eqtr4di 2798 | . . . 4 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = 𝑀) |
11 | 7, 10 | oveq12d 7466 | . . 3 ⊢ ((𝜑 ∧ 𝑐 = 𝐶) → (〈𝑐, (oppCat‘𝑐)〉 curryF (HomF‘(oppCat‘𝑐))) = (〈𝐶, 𝑂〉 curryF 𝑀)) |
12 | yonval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
13 | ovexd 7483 | . . 3 ⊢ (𝜑 → (〈𝐶, 𝑂〉 curryF 𝑀) ∈ V) | |
14 | 2, 11, 12, 13 | fvmptd2 7037 | . 2 ⊢ (𝜑 → (Yon‘𝐶) = (〈𝐶, 𝑂〉 curryF 𝑀)) |
15 | 1, 14 | eqtrid 2792 | 1 ⊢ (𝜑 → 𝑌 = (〈𝐶, 𝑂〉 curryF 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 〈cop 4654 ‘cfv 6573 (class class class)co 7448 Catccat 17722 oppCatcoppc 17769 curryF ccurf 18280 HomFchof 18318 Yoncyon 18319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-yon 18321 |
This theorem is referenced by: yoncl 18332 yon11 18334 yon12 18335 yon2 18336 yonpropd 18338 oppcyon 18339 |
Copyright terms: Public domain | W3C validator |