MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonval Structured version   Visualization version   GIF version

Theorem yonval 17979
Description: Value of the Yoneda embedding. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
yonval.y 𝑌 = (Yon‘𝐶)
yonval.c (𝜑𝐶 ∈ Cat)
yonval.o 𝑂 = (oppCat‘𝐶)
yonval.m 𝑀 = (HomF𝑂)
Assertion
Ref Expression
yonval (𝜑𝑌 = (⟨𝐶, 𝑂⟩ curryF 𝑀))

Proof of Theorem yonval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 yonval.y . 2 𝑌 = (Yon‘𝐶)
2 df-yon 17969 . . 3 Yon = (𝑐 ∈ Cat ↦ (⟨𝑐, (oppCat‘𝑐)⟩ curryF (HomF‘(oppCat‘𝑐))))
3 simpr 485 . . . . 5 ((𝜑𝑐 = 𝐶) → 𝑐 = 𝐶)
43fveq2d 6778 . . . . . 6 ((𝜑𝑐 = 𝐶) → (oppCat‘𝑐) = (oppCat‘𝐶))
5 yonval.o . . . . . 6 𝑂 = (oppCat‘𝐶)
64, 5eqtr4di 2796 . . . . 5 ((𝜑𝑐 = 𝐶) → (oppCat‘𝑐) = 𝑂)
73, 6opeq12d 4812 . . . 4 ((𝜑𝑐 = 𝐶) → ⟨𝑐, (oppCat‘𝑐)⟩ = ⟨𝐶, 𝑂⟩)
86fveq2d 6778 . . . . 5 ((𝜑𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = (HomF𝑂))
9 yonval.m . . . . 5 𝑀 = (HomF𝑂)
108, 9eqtr4di 2796 . . . 4 ((𝜑𝑐 = 𝐶) → (HomF‘(oppCat‘𝑐)) = 𝑀)
117, 10oveq12d 7293 . . 3 ((𝜑𝑐 = 𝐶) → (⟨𝑐, (oppCat‘𝑐)⟩ curryF (HomF‘(oppCat‘𝑐))) = (⟨𝐶, 𝑂⟩ curryF 𝑀))
12 yonval.c . . 3 (𝜑𝐶 ∈ Cat)
13 ovexd 7310 . . 3 (𝜑 → (⟨𝐶, 𝑂⟩ curryF 𝑀) ∈ V)
142, 11, 12, 13fvmptd2 6883 . 2 (𝜑 → (Yon‘𝐶) = (⟨𝐶, 𝑂⟩ curryF 𝑀))
151, 14eqtrid 2790 1 (𝜑𝑌 = (⟨𝐶, 𝑂⟩ curryF 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567  cfv 6433  (class class class)co 7275  Catccat 17373  oppCatcoppc 17420   curryF ccurf 17928  HomFchof 17966  Yoncyon 17967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-yon 17969
This theorem is referenced by:  yoncl  17980  yon11  17982  yon12  17983  yon2  17984  yonpropd  17986  oppcyon  17987
  Copyright terms: Public domain W3C validator