MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yon11 Structured version   Visualization version   GIF version

Theorem yon11 18261
Description: Value of the Yoneda embedding at an object. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
yon11.y 𝑌 = (Yon‘𝐶)
yon11.b 𝐵 = (Base‘𝐶)
yon11.c (𝜑𝐶 ∈ Cat)
yon11.p (𝜑𝑋𝐵)
yon11.h 𝐻 = (Hom ‘𝐶)
yon11.z (𝜑𝑍𝐵)
Assertion
Ref Expression
yon11 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑍) = (𝑍𝐻𝑋))

Proof of Theorem yon11
StepHypRef Expression
1 yon11.y . . . . . . 7 𝑌 = (Yon‘𝐶)
2 yon11.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
3 eqid 2734 . . . . . . 7 (oppCat‘𝐶) = (oppCat‘𝐶)
4 eqid 2734 . . . . . . 7 (HomF‘(oppCat‘𝐶)) = (HomF‘(oppCat‘𝐶))
51, 2, 3, 4yonval 18258 . . . . . 6 (𝜑𝑌 = (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))
65fveq2d 6876 . . . . 5 (𝜑 → (1st𝑌) = (1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶)))))
76fveq1d 6874 . . . 4 (𝜑 → ((1st𝑌)‘𝑋) = ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))
87fveq2d 6876 . . 3 (𝜑 → (1st ‘((1st𝑌)‘𝑋)) = (1st ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋)))
98fveq1d 6874 . 2 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑍) = ((1st ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))‘𝑍))
10 eqid 2734 . . 3 (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))) = (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶)))
11 yon11.b . . 3 𝐵 = (Base‘𝐶)
123oppccat 17719 . . . 4 (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat)
132, 12syl 17 . . 3 (𝜑 → (oppCat‘𝐶) ∈ Cat)
14 eqid 2734 . . . 4 (SetCat‘ran (Homf𝐶)) = (SetCat‘ran (Homf𝐶))
15 fvex 6885 . . . . . 6 (Homf𝐶) ∈ V
1615rnex 7900 . . . . 5 ran (Homf𝐶) ∈ V
1716a1i 11 . . . 4 (𝜑 → ran (Homf𝐶) ∈ V)
18 ssidd 3980 . . . 4 (𝜑 → ran (Homf𝐶) ⊆ ran (Homf𝐶))
193, 4, 14, 2, 17, 18oppchofcl 18257 . . 3 (𝜑 → (HomF‘(oppCat‘𝐶)) ∈ ((𝐶 ×c (oppCat‘𝐶)) Func (SetCat‘ran (Homf𝐶))))
203, 11oppcbas 17715 . . 3 𝐵 = (Base‘(oppCat‘𝐶))
21 yon11.p . . 3 (𝜑𝑋𝐵)
22 eqid 2734 . . 3 ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋) = ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋)
23 yon11.z . . 3 (𝜑𝑍𝐵)
2410, 11, 2, 13, 19, 20, 21, 22, 23curf11 18223 . 2 (𝜑 → ((1st ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))‘𝑍) = (𝑋(1st ‘(HomF‘(oppCat‘𝐶)))𝑍))
25 eqid 2734 . . . 4 (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶))
264, 13, 20, 25, 21, 23hof1 18251 . . 3 (𝜑 → (𝑋(1st ‘(HomF‘(oppCat‘𝐶)))𝑍) = (𝑋(Hom ‘(oppCat‘𝐶))𝑍))
27 yon11.h . . . 4 𝐻 = (Hom ‘𝐶)
2827, 3oppchom 17712 . . 3 (𝑋(Hom ‘(oppCat‘𝐶))𝑍) = (𝑍𝐻𝑋)
2926, 28eqtrdi 2785 . 2 (𝜑 → (𝑋(1st ‘(HomF‘(oppCat‘𝐶)))𝑍) = (𝑍𝐻𝑋))
309, 24, 293eqtrd 2773 1 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑍) = (𝑍𝐻𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3457  cop 4605  ran crn 5652  cfv 6527  (class class class)co 7399  1st c1st 7980  Basecbs 17213  Hom chom 17267  Catccat 17661  Homf chomf 17663  oppCatcoppc 17708  SetCatcsetc 18073   curryF ccurf 18207  HomFchof 18245  Yoncyon 18246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-tpos 8219  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-map 8836  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-z 12581  df-dec 12701  df-uz 12845  df-fz 13514  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-hom 17280  df-cco 17281  df-cat 17665  df-cid 17666  df-homf 17667  df-comf 17668  df-oppc 17709  df-func 17856  df-setc 18074  df-xpc 18169  df-curf 18211  df-hof 18247  df-yon 18248
This theorem is referenced by:  yonedalem3a  18271  yonedalem4c  18274  yonedalem3b  18276  yonedainv  18278  yonffthlem  18279  yoniso  18282
  Copyright terms: Public domain W3C validator