MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yon11 Structured version   Visualization version   GIF version

Theorem yon11 18059
Description: Value of the Yoneda embedding at an object. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
yon11.y 𝑌 = (Yon‘𝐶)
yon11.b 𝐵 = (Base‘𝐶)
yon11.c (𝜑𝐶 ∈ Cat)
yon11.p (𝜑𝑋𝐵)
yon11.h 𝐻 = (Hom ‘𝐶)
yon11.z (𝜑𝑍𝐵)
Assertion
Ref Expression
yon11 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑍) = (𝑍𝐻𝑋))

Proof of Theorem yon11
StepHypRef Expression
1 yon11.y . . . . . . 7 𝑌 = (Yon‘𝐶)
2 yon11.c . . . . . . 7 (𝜑𝐶 ∈ Cat)
3 eqid 2737 . . . . . . 7 (oppCat‘𝐶) = (oppCat‘𝐶)
4 eqid 2737 . . . . . . 7 (HomF‘(oppCat‘𝐶)) = (HomF‘(oppCat‘𝐶))
51, 2, 3, 4yonval 18056 . . . . . 6 (𝜑𝑌 = (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))
65fveq2d 6816 . . . . 5 (𝜑 → (1st𝑌) = (1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶)))))
76fveq1d 6814 . . . 4 (𝜑 → ((1st𝑌)‘𝑋) = ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))
87fveq2d 6816 . . 3 (𝜑 → (1st ‘((1st𝑌)‘𝑋)) = (1st ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋)))
98fveq1d 6814 . 2 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑍) = ((1st ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))‘𝑍))
10 eqid 2737 . . 3 (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))) = (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶)))
11 yon11.b . . 3 𝐵 = (Base‘𝐶)
123oppccat 17510 . . . 4 (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat)
132, 12syl 17 . . 3 (𝜑 → (oppCat‘𝐶) ∈ Cat)
14 eqid 2737 . . . 4 (SetCat‘ran (Homf𝐶)) = (SetCat‘ran (Homf𝐶))
15 fvex 6825 . . . . . 6 (Homf𝐶) ∈ V
1615rnex 7806 . . . . 5 ran (Homf𝐶) ∈ V
1716a1i 11 . . . 4 (𝜑 → ran (Homf𝐶) ∈ V)
18 ssidd 3954 . . . 4 (𝜑 → ran (Homf𝐶) ⊆ ran (Homf𝐶))
193, 4, 14, 2, 17, 18oppchofcl 18055 . . 3 (𝜑 → (HomF‘(oppCat‘𝐶)) ∈ ((𝐶 ×c (oppCat‘𝐶)) Func (SetCat‘ran (Homf𝐶))))
203, 11oppcbas 17505 . . 3 𝐵 = (Base‘(oppCat‘𝐶))
21 yon11.p . . 3 (𝜑𝑋𝐵)
22 eqid 2737 . . 3 ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋) = ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋)
23 yon11.z . . 3 (𝜑𝑍𝐵)
2410, 11, 2, 13, 19, 20, 21, 22, 23curf11 18021 . 2 (𝜑 → ((1st ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))‘𝑍) = (𝑋(1st ‘(HomF‘(oppCat‘𝐶)))𝑍))
25 eqid 2737 . . . 4 (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶))
264, 13, 20, 25, 21, 23hof1 18049 . . 3 (𝜑 → (𝑋(1st ‘(HomF‘(oppCat‘𝐶)))𝑍) = (𝑋(Hom ‘(oppCat‘𝐶))𝑍))
27 yon11.h . . . 4 𝐻 = (Hom ‘𝐶)
2827, 3oppchom 17502 . . 3 (𝑋(Hom ‘(oppCat‘𝐶))𝑍) = (𝑍𝐻𝑋)
2926, 28eqtrdi 2793 . 2 (𝜑 → (𝑋(1st ‘(HomF‘(oppCat‘𝐶)))𝑍) = (𝑍𝐻𝑋))
309, 24, 293eqtrd 2781 1 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑍) = (𝑍𝐻𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3441  cop 4577  ran crn 5609  cfv 6466  (class class class)co 7317  1st c1st 7876  Basecbs 16989  Hom chom 17050  Catccat 17450  Homf chomf 17452  oppCatcoppc 17497  SetCatcsetc 17867   curryF ccurf 18005  HomFchof 18043  Yoncyon 18044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-tpos 8091  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-er 8548  df-map 8667  df-ixp 8736  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-3 12117  df-4 12118  df-5 12119  df-6 12120  df-7 12121  df-8 12122  df-9 12123  df-n0 12314  df-z 12400  df-dec 12518  df-uz 12663  df-fz 13320  df-struct 16925  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-hom 17063  df-cco 17064  df-cat 17454  df-cid 17455  df-homf 17456  df-comf 17457  df-oppc 17498  df-func 17650  df-setc 17868  df-xpc 17966  df-curf 18009  df-hof 18045  df-yon 18046
This theorem is referenced by:  yonedalem3a  18069  yonedalem4c  18072  yonedalem3b  18074  yonedainv  18076  yonffthlem  18077  yoniso  18080
  Copyright terms: Public domain W3C validator