Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > yon11 | Structured version Visualization version GIF version |
Description: Value of the Yoneda embedding at an object. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
Ref | Expression |
---|---|
yon11.y | ⊢ 𝑌 = (Yon‘𝐶) |
yon11.b | ⊢ 𝐵 = (Base‘𝐶) |
yon11.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
yon11.p | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
yon11.h | ⊢ 𝐻 = (Hom ‘𝐶) |
yon11.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
yon11 | ⊢ (𝜑 → ((1st ‘((1st ‘𝑌)‘𝑋))‘𝑍) = (𝑍𝐻𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | yon11.y | . . . . . . 7 ⊢ 𝑌 = (Yon‘𝐶) | |
2 | yon11.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
3 | eqid 2737 | . . . . . . 7 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
4 | eqid 2737 | . . . . . . 7 ⊢ (HomF‘(oppCat‘𝐶)) = (HomF‘(oppCat‘𝐶)) | |
5 | 1, 2, 3, 4 | yonval 18056 | . . . . . 6 ⊢ (𝜑 → 𝑌 = (〈𝐶, (oppCat‘𝐶)〉 curryF (HomF‘(oppCat‘𝐶)))) |
6 | 5 | fveq2d 6816 | . . . . 5 ⊢ (𝜑 → (1st ‘𝑌) = (1st ‘(〈𝐶, (oppCat‘𝐶)〉 curryF (HomF‘(oppCat‘𝐶))))) |
7 | 6 | fveq1d 6814 | . . . 4 ⊢ (𝜑 → ((1st ‘𝑌)‘𝑋) = ((1st ‘(〈𝐶, (oppCat‘𝐶)〉 curryF (HomF‘(oppCat‘𝐶))))‘𝑋)) |
8 | 7 | fveq2d 6816 | . . 3 ⊢ (𝜑 → (1st ‘((1st ‘𝑌)‘𝑋)) = (1st ‘((1st ‘(〈𝐶, (oppCat‘𝐶)〉 curryF (HomF‘(oppCat‘𝐶))))‘𝑋))) |
9 | 8 | fveq1d 6814 | . 2 ⊢ (𝜑 → ((1st ‘((1st ‘𝑌)‘𝑋))‘𝑍) = ((1st ‘((1st ‘(〈𝐶, (oppCat‘𝐶)〉 curryF (HomF‘(oppCat‘𝐶))))‘𝑋))‘𝑍)) |
10 | eqid 2737 | . . 3 ⊢ (〈𝐶, (oppCat‘𝐶)〉 curryF (HomF‘(oppCat‘𝐶))) = (〈𝐶, (oppCat‘𝐶)〉 curryF (HomF‘(oppCat‘𝐶))) | |
11 | yon11.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
12 | 3 | oppccat 17510 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
13 | 2, 12 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
14 | eqid 2737 | . . . 4 ⊢ (SetCat‘ran (Homf ‘𝐶)) = (SetCat‘ran (Homf ‘𝐶)) | |
15 | fvex 6825 | . . . . . 6 ⊢ (Homf ‘𝐶) ∈ V | |
16 | 15 | rnex 7806 | . . . . 5 ⊢ ran (Homf ‘𝐶) ∈ V |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → ran (Homf ‘𝐶) ∈ V) |
18 | ssidd 3954 | . . . 4 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ ran (Homf ‘𝐶)) | |
19 | 3, 4, 14, 2, 17, 18 | oppchofcl 18055 | . . 3 ⊢ (𝜑 → (HomF‘(oppCat‘𝐶)) ∈ ((𝐶 ×c (oppCat‘𝐶)) Func (SetCat‘ran (Homf ‘𝐶)))) |
20 | 3, 11 | oppcbas 17505 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
21 | yon11.p | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
22 | eqid 2737 | . . 3 ⊢ ((1st ‘(〈𝐶, (oppCat‘𝐶)〉 curryF (HomF‘(oppCat‘𝐶))))‘𝑋) = ((1st ‘(〈𝐶, (oppCat‘𝐶)〉 curryF (HomF‘(oppCat‘𝐶))))‘𝑋) | |
23 | yon11.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
24 | 10, 11, 2, 13, 19, 20, 21, 22, 23 | curf11 18021 | . 2 ⊢ (𝜑 → ((1st ‘((1st ‘(〈𝐶, (oppCat‘𝐶)〉 curryF (HomF‘(oppCat‘𝐶))))‘𝑋))‘𝑍) = (𝑋(1st ‘(HomF‘(oppCat‘𝐶)))𝑍)) |
25 | eqid 2737 | . . . 4 ⊢ (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶)) | |
26 | 4, 13, 20, 25, 21, 23 | hof1 18049 | . . 3 ⊢ (𝜑 → (𝑋(1st ‘(HomF‘(oppCat‘𝐶)))𝑍) = (𝑋(Hom ‘(oppCat‘𝐶))𝑍)) |
27 | yon11.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
28 | 27, 3 | oppchom 17502 | . . 3 ⊢ (𝑋(Hom ‘(oppCat‘𝐶))𝑍) = (𝑍𝐻𝑋) |
29 | 26, 28 | eqtrdi 2793 | . 2 ⊢ (𝜑 → (𝑋(1st ‘(HomF‘(oppCat‘𝐶)))𝑍) = (𝑍𝐻𝑋)) |
30 | 9, 24, 29 | 3eqtrd 2781 | 1 ⊢ (𝜑 → ((1st ‘((1st ‘𝑌)‘𝑋))‘𝑍) = (𝑍𝐻𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 〈cop 4577 ran crn 5609 ‘cfv 6466 (class class class)co 7317 1st c1st 7876 Basecbs 16989 Hom chom 17050 Catccat 17450 Homf chomf 17452 oppCatcoppc 17497 SetCatcsetc 17867 curryF ccurf 18005 HomFchof 18043 Yoncyon 18044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-tpos 8091 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-map 8667 df-ixp 8736 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-9 12123 df-n0 12314 df-z 12400 df-dec 12518 df-uz 12663 df-fz 13320 df-struct 16925 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-hom 17063 df-cco 17064 df-cat 17454 df-cid 17455 df-homf 17456 df-comf 17457 df-oppc 17498 df-func 17650 df-setc 17868 df-xpc 17966 df-curf 18009 df-hof 18045 df-yon 18046 |
This theorem is referenced by: yonedalem3a 18069 yonedalem4c 18072 yonedalem3b 18074 yonedainv 18076 yonffthlem 18077 yoniso 18080 |
Copyright terms: Public domain | W3C validator |