![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcyon | Structured version Visualization version GIF version |
Description: Value of the opposite Yoneda embedding. (Contributed by Mario Carneiro, 26-Jan-2017.) |
Ref | Expression |
---|---|
oppcyon.o | β’ π = (oppCatβπΆ) |
oppcyon.y | β’ π = (Yonβπ) |
oppcyon.m | β’ π = (HomFβπΆ) |
oppcyon.c | β’ (π β πΆ β Cat) |
Ref | Expression |
---|---|
oppcyon | β’ (π β π = (β¨π, πΆβ© curryF π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcyon.m | . . . 4 β’ π = (HomFβπΆ) | |
2 | oppcyon.o | . . . . . . 7 β’ π = (oppCatβπΆ) | |
3 | 2 | 2oppchomf 17713 | . . . . . 6 β’ (Homf βπΆ) = (Homf β(oppCatβπ)) |
4 | 3 | a1i 11 | . . . . 5 β’ (π β (Homf βπΆ) = (Homf β(oppCatβπ))) |
5 | 2 | 2oppccomf 17714 | . . . . . 6 β’ (compfβπΆ) = (compfβ(oppCatβπ)) |
6 | 5 | a1i 11 | . . . . 5 β’ (π β (compfβπΆ) = (compfβ(oppCatβπ))) |
7 | oppcyon.c | . . . . 5 β’ (π β πΆ β Cat) | |
8 | 2 | oppccat 17711 | . . . . . . 7 β’ (πΆ β Cat β π β Cat) |
9 | 7, 8 | syl 17 | . . . . . 6 β’ (π β π β Cat) |
10 | eqid 2728 | . . . . . . 7 β’ (oppCatβπ) = (oppCatβπ) | |
11 | 10 | oppccat 17711 | . . . . . 6 β’ (π β Cat β (oppCatβπ) β Cat) |
12 | 9, 11 | syl 17 | . . . . 5 β’ (π β (oppCatβπ) β Cat) |
13 | 4, 6, 7, 12 | hofpropd 18266 | . . . 4 β’ (π β (HomFβπΆ) = (HomFβ(oppCatβπ))) |
14 | 1, 13 | eqtrid 2780 | . . 3 β’ (π β π = (HomFβ(oppCatβπ))) |
15 | 14 | oveq2d 7442 | . 2 β’ (π β (β¨π, (oppCatβπ)β© curryF π) = (β¨π, (oppCatβπ)β© curryF (HomFβ(oppCatβπ)))) |
16 | eqidd 2729 | . . 3 β’ (π β (Homf βπ) = (Homf βπ)) | |
17 | eqidd 2729 | . . 3 β’ (π β (compfβπ) = (compfβπ)) | |
18 | eqid 2728 | . . . 4 β’ (SetCatβran (Homf βπΆ)) = (SetCatβran (Homf βπΆ)) | |
19 | fvex 6915 | . . . . . 6 β’ (Homf βπΆ) β V | |
20 | 19 | rnex 7924 | . . . . 5 β’ ran (Homf βπΆ) β V |
21 | 20 | a1i 11 | . . . 4 β’ (π β ran (Homf βπΆ) β V) |
22 | ssidd 4005 | . . . 4 β’ (π β ran (Homf βπΆ) β ran (Homf βπΆ)) | |
23 | 1, 2, 18, 7, 21, 22 | hofcl 18258 | . . 3 β’ (π β π β ((π Γc πΆ) Func (SetCatβran (Homf βπΆ)))) |
24 | 16, 17, 4, 6, 9, 9, 7, 12, 23 | curfpropd 18232 | . 2 β’ (π β (β¨π, πΆβ© curryF π) = (β¨π, (oppCatβπ)β© curryF π)) |
25 | oppcyon.y | . . 3 β’ π = (Yonβπ) | |
26 | eqid 2728 | . . 3 β’ (HomFβ(oppCatβπ)) = (HomFβ(oppCatβπ)) | |
27 | 25, 9, 10, 26 | yonval 18260 | . 2 β’ (π β π = (β¨π, (oppCatβπ)β© curryF (HomFβ(oppCatβπ)))) |
28 | 15, 24, 27 | 3eqtr4rd 2779 | 1 β’ (π β π = (β¨π, πΆβ© curryF π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3473 β¨cop 4638 ran crn 5683 βcfv 6553 (class class class)co 7426 Catccat 17651 Homf chomf 17653 compfccomf 17654 oppCatcoppc 17698 SetCatcsetc 18071 curryF ccurf 18209 HomFchof 18247 Yoncyon 18248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-tpos 8238 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-ixp 8923 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-hom 17264 df-cco 17265 df-cat 17655 df-cid 17656 df-homf 17657 df-comf 17658 df-oppc 17699 df-func 17851 df-setc 18072 df-xpc 18170 df-curf 18213 df-hof 18249 df-yon 18250 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |