![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcyon | Structured version Visualization version GIF version |
Description: Value of the opposite Yoneda embedding. (Contributed by Mario Carneiro, 26-Jan-2017.) |
Ref | Expression |
---|---|
oppcyon.o | β’ π = (oppCatβπΆ) |
oppcyon.y | β’ π = (Yonβπ) |
oppcyon.m | β’ π = (HomFβπΆ) |
oppcyon.c | β’ (π β πΆ β Cat) |
Ref | Expression |
---|---|
oppcyon | β’ (π β π = (β¨π, πΆβ© curryF π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcyon.m | . . . 4 β’ π = (HomFβπΆ) | |
2 | oppcyon.o | . . . . . . 7 β’ π = (oppCatβπΆ) | |
3 | 2 | 2oppchomf 17666 | . . . . . 6 β’ (Homf βπΆ) = (Homf β(oppCatβπ)) |
4 | 3 | a1i 11 | . . . . 5 β’ (π β (Homf βπΆ) = (Homf β(oppCatβπ))) |
5 | 2 | 2oppccomf 17667 | . . . . . 6 β’ (compfβπΆ) = (compfβ(oppCatβπ)) |
6 | 5 | a1i 11 | . . . . 5 β’ (π β (compfβπΆ) = (compfβ(oppCatβπ))) |
7 | oppcyon.c | . . . . 5 β’ (π β πΆ β Cat) | |
8 | 2 | oppccat 17664 | . . . . . . 7 β’ (πΆ β Cat β π β Cat) |
9 | 7, 8 | syl 17 | . . . . . 6 β’ (π β π β Cat) |
10 | eqid 2732 | . . . . . . 7 β’ (oppCatβπ) = (oppCatβπ) | |
11 | 10 | oppccat 17664 | . . . . . 6 β’ (π β Cat β (oppCatβπ) β Cat) |
12 | 9, 11 | syl 17 | . . . . 5 β’ (π β (oppCatβπ) β Cat) |
13 | 4, 6, 7, 12 | hofpropd 18216 | . . . 4 β’ (π β (HomFβπΆ) = (HomFβ(oppCatβπ))) |
14 | 1, 13 | eqtrid 2784 | . . 3 β’ (π β π = (HomFβ(oppCatβπ))) |
15 | 14 | oveq2d 7421 | . 2 β’ (π β (β¨π, (oppCatβπ)β© curryF π) = (β¨π, (oppCatβπ)β© curryF (HomFβ(oppCatβπ)))) |
16 | eqidd 2733 | . . 3 β’ (π β (Homf βπ) = (Homf βπ)) | |
17 | eqidd 2733 | . . 3 β’ (π β (compfβπ) = (compfβπ)) | |
18 | eqid 2732 | . . . 4 β’ (SetCatβran (Homf βπΆ)) = (SetCatβran (Homf βπΆ)) | |
19 | fvex 6901 | . . . . . 6 β’ (Homf βπΆ) β V | |
20 | 19 | rnex 7899 | . . . . 5 β’ ran (Homf βπΆ) β V |
21 | 20 | a1i 11 | . . . 4 β’ (π β ran (Homf βπΆ) β V) |
22 | ssidd 4004 | . . . 4 β’ (π β ran (Homf βπΆ) β ran (Homf βπΆ)) | |
23 | 1, 2, 18, 7, 21, 22 | hofcl 18208 | . . 3 β’ (π β π β ((π Γc πΆ) Func (SetCatβran (Homf βπΆ)))) |
24 | 16, 17, 4, 6, 9, 9, 7, 12, 23 | curfpropd 18182 | . 2 β’ (π β (β¨π, πΆβ© curryF π) = (β¨π, (oppCatβπ)β© curryF π)) |
25 | oppcyon.y | . . 3 β’ π = (Yonβπ) | |
26 | eqid 2732 | . . 3 β’ (HomFβ(oppCatβπ)) = (HomFβ(oppCatβπ)) | |
27 | 25, 9, 10, 26 | yonval 18210 | . 2 β’ (π β π = (β¨π, (oppCatβπ)β© curryF (HomFβ(oppCatβπ)))) |
28 | 15, 24, 27 | 3eqtr4rd 2783 | 1 β’ (π β π = (β¨π, πΆβ© curryF π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 β¨cop 4633 ran crn 5676 βcfv 6540 (class class class)co 7405 Catccat 17604 Homf chomf 17606 compfccomf 17607 oppCatcoppc 17651 SetCatcsetc 18021 curryF ccurf 18159 HomFchof 18197 Yoncyon 18198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-hom 17217 df-cco 17218 df-cat 17608 df-cid 17609 df-homf 17610 df-comf 17611 df-oppc 17652 df-func 17804 df-setc 18022 df-xpc 18120 df-curf 18163 df-hof 18199 df-yon 18200 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |