Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppcyon | Structured version Visualization version GIF version |
Description: Value of the opposite Yoneda embedding. (Contributed by Mario Carneiro, 26-Jan-2017.) |
Ref | Expression |
---|---|
oppcyon.o | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcyon.y | ⊢ 𝑌 = (Yon‘𝑂) |
oppcyon.m | ⊢ 𝑀 = (HomF‘𝐶) |
oppcyon.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Ref | Expression |
---|---|
oppcyon | ⊢ (𝜑 → 𝑌 = (〈𝑂, 𝐶〉 curryF 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcyon.m | . . . 4 ⊢ 𝑀 = (HomF‘𝐶) | |
2 | oppcyon.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
3 | 2 | 2oppchomf 17435 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂))) |
5 | 2 | 2oppccomf 17436 | . . . . . 6 ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → (compf‘𝐶) = (compf‘(oppCat‘𝑂))) |
7 | oppcyon.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
8 | 2 | oppccat 17433 | . . . . . . 7 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑂 ∈ Cat) |
10 | eqid 2738 | . . . . . . 7 ⊢ (oppCat‘𝑂) = (oppCat‘𝑂) | |
11 | 10 | oppccat 17433 | . . . . . 6 ⊢ (𝑂 ∈ Cat → (oppCat‘𝑂) ∈ Cat) |
12 | 9, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → (oppCat‘𝑂) ∈ Cat) |
13 | 4, 6, 7, 12 | hofpropd 17985 | . . . 4 ⊢ (𝜑 → (HomF‘𝐶) = (HomF‘(oppCat‘𝑂))) |
14 | 1, 13 | eqtrid 2790 | . . 3 ⊢ (𝜑 → 𝑀 = (HomF‘(oppCat‘𝑂))) |
15 | 14 | oveq2d 7291 | . 2 ⊢ (𝜑 → (〈𝑂, (oppCat‘𝑂)〉 curryF 𝑀) = (〈𝑂, (oppCat‘𝑂)〉 curryF (HomF‘(oppCat‘𝑂)))) |
16 | eqidd 2739 | . . 3 ⊢ (𝜑 → (Homf ‘𝑂) = (Homf ‘𝑂)) | |
17 | eqidd 2739 | . . 3 ⊢ (𝜑 → (compf‘𝑂) = (compf‘𝑂)) | |
18 | eqid 2738 | . . . 4 ⊢ (SetCat‘ran (Homf ‘𝐶)) = (SetCat‘ran (Homf ‘𝐶)) | |
19 | fvex 6787 | . . . . . 6 ⊢ (Homf ‘𝐶) ∈ V | |
20 | 19 | rnex 7759 | . . . . 5 ⊢ ran (Homf ‘𝐶) ∈ V |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝜑 → ran (Homf ‘𝐶) ∈ V) |
22 | ssidd 3944 | . . . 4 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ ran (Homf ‘𝐶)) | |
23 | 1, 2, 18, 7, 21, 22 | hofcl 17977 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ((𝑂 ×c 𝐶) Func (SetCat‘ran (Homf ‘𝐶)))) |
24 | 16, 17, 4, 6, 9, 9, 7, 12, 23 | curfpropd 17951 | . 2 ⊢ (𝜑 → (〈𝑂, 𝐶〉 curryF 𝑀) = (〈𝑂, (oppCat‘𝑂)〉 curryF 𝑀)) |
25 | oppcyon.y | . . 3 ⊢ 𝑌 = (Yon‘𝑂) | |
26 | eqid 2738 | . . 3 ⊢ (HomF‘(oppCat‘𝑂)) = (HomF‘(oppCat‘𝑂)) | |
27 | 25, 9, 10, 26 | yonval 17979 | . 2 ⊢ (𝜑 → 𝑌 = (〈𝑂, (oppCat‘𝑂)〉 curryF (HomF‘(oppCat‘𝑂)))) |
28 | 15, 24, 27 | 3eqtr4rd 2789 | 1 ⊢ (𝜑 → 𝑌 = (〈𝑂, 𝐶〉 curryF 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 ran crn 5590 ‘cfv 6433 (class class class)co 7275 Catccat 17373 Homf chomf 17375 compfccomf 17376 oppCatcoppc 17420 SetCatcsetc 17790 curryF ccurf 17928 HomFchof 17966 Yoncyon 17967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-hom 16986 df-cco 16987 df-cat 17377 df-cid 17378 df-homf 17379 df-comf 17380 df-oppc 17421 df-func 17573 df-setc 17791 df-xpc 17889 df-curf 17932 df-hof 17968 df-yon 17969 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |