Proof of Theorem yon2
Step | Hyp | Ref
| Expression |
1 | | yon11.y |
. . . . . . . . 9
⊢ 𝑌 = (Yon‘𝐶) |
2 | | yon11.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ Cat) |
3 | | eqid 2738 |
. . . . . . . . 9
⊢
(oppCat‘𝐶) =
(oppCat‘𝐶) |
4 | | eqid 2738 |
. . . . . . . . 9
⊢
(HomF‘(oppCat‘𝐶)) =
(HomF‘(oppCat‘𝐶)) |
5 | 1, 2, 3, 4 | yonval 17979 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 = (〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶)))) |
6 | 5 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 → (2nd
‘𝑌) = (2nd
‘(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))))) |
7 | 6 | oveqd 7292 |
. . . . . 6
⊢ (𝜑 → (𝑋(2nd ‘𝑌)𝑍) = (𝑋(2nd ‘(〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))))𝑍)) |
8 | 7 | fveq1d 6776 |
. . . . 5
⊢ (𝜑 → ((𝑋(2nd ‘𝑌)𝑍)‘𝐹) = ((𝑋(2nd ‘(〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))))𝑍)‘𝐹)) |
9 | 8 | fveq1d 6776 |
. . . 4
⊢ (𝜑 → (((𝑋(2nd ‘𝑌)𝑍)‘𝐹)‘𝑊) = (((𝑋(2nd ‘(〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))))𝑍)‘𝐹)‘𝑊)) |
10 | | eqid 2738 |
. . . . 5
⊢
(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))) = (〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))) |
11 | | yon11.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
12 | 3 | oppccat 17433 |
. . . . . 6
⊢ (𝐶 ∈ Cat →
(oppCat‘𝐶) ∈
Cat) |
13 | 2, 12 | syl 17 |
. . . . 5
⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
14 | | eqid 2738 |
. . . . . 6
⊢
(SetCat‘ran (Homf ‘𝐶)) = (SetCat‘ran
(Homf ‘𝐶)) |
15 | | fvex 6787 |
. . . . . . . 8
⊢
(Homf ‘𝐶) ∈ V |
16 | 15 | rnex 7759 |
. . . . . . 7
⊢ ran
(Homf ‘𝐶) ∈ V |
17 | 16 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ran
(Homf ‘𝐶) ∈ V) |
18 | | ssidd 3944 |
. . . . . 6
⊢ (𝜑 → ran
(Homf ‘𝐶) ⊆ ran (Homf
‘𝐶)) |
19 | 3, 4, 14, 2, 17, 18 | oppchofcl 17978 |
. . . . 5
⊢ (𝜑 →
(HomF‘(oppCat‘𝐶)) ∈ ((𝐶 ×c
(oppCat‘𝐶)) Func
(SetCat‘ran (Homf ‘𝐶)))) |
20 | 3, 11 | oppcbas 17428 |
. . . . 5
⊢ 𝐵 =
(Base‘(oppCat‘𝐶)) |
21 | | yon11.h |
. . . . 5
⊢ 𝐻 = (Hom ‘𝐶) |
22 | | eqid 2738 |
. . . . 5
⊢
(Id‘(oppCat‘𝐶)) = (Id‘(oppCat‘𝐶)) |
23 | | yon11.p |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
24 | | yon11.z |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
25 | | yon2.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑍)) |
26 | | eqid 2738 |
. . . . 5
⊢ ((𝑋(2nd
‘(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))))𝑍)‘𝐹) = ((𝑋(2nd ‘(〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))))𝑍)‘𝐹) |
27 | | yon12.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ 𝐵) |
28 | 10, 11, 2, 13, 19, 20, 21, 22, 23, 24, 25, 26, 27 | curf2val 17948 |
. . . 4
⊢ (𝜑 → (((𝑋(2nd ‘(〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))))𝑍)‘𝐹)‘𝑊) = (𝐹(〈𝑋, 𝑊〉(2nd
‘(HomF‘(oppCat‘𝐶)))〈𝑍, 𝑊〉)((Id‘(oppCat‘𝐶))‘𝑊))) |
29 | 9, 28 | eqtrd 2778 |
. . 3
⊢ (𝜑 → (((𝑋(2nd ‘𝑌)𝑍)‘𝐹)‘𝑊) = (𝐹(〈𝑋, 𝑊〉(2nd
‘(HomF‘(oppCat‘𝐶)))〈𝑍, 𝑊〉)((Id‘(oppCat‘𝐶))‘𝑊))) |
30 | 29 | fveq1d 6776 |
. 2
⊢ (𝜑 → ((((𝑋(2nd ‘𝑌)𝑍)‘𝐹)‘𝑊)‘𝐺) = ((𝐹(〈𝑋, 𝑊〉(2nd
‘(HomF‘(oppCat‘𝐶)))〈𝑍, 𝑊〉)((Id‘(oppCat‘𝐶))‘𝑊))‘𝐺)) |
31 | | eqid 2738 |
. . 3
⊢ (Hom
‘(oppCat‘𝐶)) =
(Hom ‘(oppCat‘𝐶)) |
32 | | eqid 2738 |
. . 3
⊢
(comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) |
33 | 21, 3 | oppchom 17425 |
. . . 4
⊢ (𝑍(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑍) |
34 | 25, 33 | eleqtrrdi 2850 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑋)) |
35 | 20, 31, 22, 13, 27 | catidcl 17391 |
. . 3
⊢ (𝜑 →
((Id‘(oppCat‘𝐶))‘𝑊) ∈ (𝑊(Hom ‘(oppCat‘𝐶))𝑊)) |
36 | | yon2.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝑊𝐻𝑋)) |
37 | 21, 3 | oppchom 17425 |
. . . 4
⊢ (𝑋(Hom ‘(oppCat‘𝐶))𝑊) = (𝑊𝐻𝑋) |
38 | 36, 37 | eleqtrrdi 2850 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (𝑋(Hom ‘(oppCat‘𝐶))𝑊)) |
39 | 4, 13, 20, 31, 23, 27, 24, 27, 32, 34, 35, 38 | hof2 17975 |
. 2
⊢ (𝜑 → ((𝐹(〈𝑋, 𝑊〉(2nd
‘(HomF‘(oppCat‘𝐶)))〈𝑍, 𝑊〉)((Id‘(oppCat‘𝐶))‘𝑊))‘𝐺) = ((((Id‘(oppCat‘𝐶))‘𝑊)(〈𝑋, 𝑊〉(comp‘(oppCat‘𝐶))𝑊)𝐺)(〈𝑍, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)𝐹)) |
40 | 20, 31, 22, 13, 23, 32, 27, 38 | catlid 17392 |
. . . 4
⊢ (𝜑 →
(((Id‘(oppCat‘𝐶))‘𝑊)(〈𝑋, 𝑊〉(comp‘(oppCat‘𝐶))𝑊)𝐺) = 𝐺) |
41 | 40 | oveq1d 7290 |
. . 3
⊢ (𝜑 →
((((Id‘(oppCat‘𝐶))‘𝑊)(〈𝑋, 𝑊〉(comp‘(oppCat‘𝐶))𝑊)𝐺)(〈𝑍, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)𝐹) = (𝐺(〈𝑍, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)𝐹)) |
42 | | yon12.x |
. . . 4
⊢ · =
(comp‘𝐶) |
43 | 11, 42, 3, 24, 23, 27 | oppcco 17427 |
. . 3
⊢ (𝜑 → (𝐺(〈𝑍, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)𝐹) = (𝐹(〈𝑊, 𝑋〉 · 𝑍)𝐺)) |
44 | 41, 43 | eqtrd 2778 |
. 2
⊢ (𝜑 →
((((Id‘(oppCat‘𝐶))‘𝑊)(〈𝑋, 𝑊〉(comp‘(oppCat‘𝐶))𝑊)𝐺)(〈𝑍, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)𝐹) = (𝐹(〈𝑊, 𝑋〉 · 𝑍)𝐺)) |
45 | 30, 39, 44 | 3eqtrd 2782 |
1
⊢ (𝜑 → ((((𝑋(2nd ‘𝑌)𝑍)‘𝐹)‘𝑊)‘𝐺) = (𝐹(〈𝑊, 𝑋〉 · 𝑍)𝐺)) |