Step | Hyp | Ref
| Expression |
1 | | yon11.y |
. . . . . . . . 9
β’ π = (YonβπΆ) |
2 | | yon11.c |
. . . . . . . . 9
β’ (π β πΆ β Cat) |
3 | | eqid 2732 |
. . . . . . . . 9
β’
(oppCatβπΆ) =
(oppCatβπΆ) |
4 | | eqid 2732 |
. . . . . . . . 9
β’
(HomFβ(oppCatβπΆ)) =
(HomFβ(oppCatβπΆ)) |
5 | 1, 2, 3, 4 | yonval 18210 |
. . . . . . . 8
β’ (π β π = (β¨πΆ, (oppCatβπΆ)β© curryF
(HomFβ(oppCatβπΆ)))) |
6 | 5 | fveq2d 6892 |
. . . . . . 7
β’ (π β (2nd
βπ) = (2nd
β(β¨πΆ,
(oppCatβπΆ)β©
curryF (HomFβ(oppCatβπΆ))))) |
7 | 6 | oveqd 7422 |
. . . . . 6
β’ (π β (π(2nd βπ)π) = (π(2nd β(β¨πΆ, (oppCatβπΆ)β© curryF
(HomFβ(oppCatβπΆ))))π)) |
8 | 7 | fveq1d 6890 |
. . . . 5
β’ (π β ((π(2nd βπ)π)βπΉ) = ((π(2nd β(β¨πΆ, (oppCatβπΆ)β© curryF
(HomFβ(oppCatβπΆ))))π)βπΉ)) |
9 | 8 | fveq1d 6890 |
. . . 4
β’ (π β (((π(2nd βπ)π)βπΉ)βπ) = (((π(2nd β(β¨πΆ, (oppCatβπΆ)β© curryF
(HomFβ(oppCatβπΆ))))π)βπΉ)βπ)) |
10 | | eqid 2732 |
. . . . 5
β’
(β¨πΆ,
(oppCatβπΆ)β©
curryF (HomFβ(oppCatβπΆ))) = (β¨πΆ, (oppCatβπΆ)β© curryF
(HomFβ(oppCatβπΆ))) |
11 | | yon11.b |
. . . . 5
β’ π΅ = (BaseβπΆ) |
12 | 3 | oppccat 17664 |
. . . . . 6
β’ (πΆ β Cat β
(oppCatβπΆ) β
Cat) |
13 | 2, 12 | syl 17 |
. . . . 5
β’ (π β (oppCatβπΆ) β Cat) |
14 | | eqid 2732 |
. . . . . 6
β’
(SetCatβran (Homf βπΆ)) = (SetCatβran
(Homf βπΆ)) |
15 | | fvex 6901 |
. . . . . . . 8
β’
(Homf βπΆ) β V |
16 | 15 | rnex 7899 |
. . . . . . 7
β’ ran
(Homf βπΆ) β V |
17 | 16 | a1i 11 |
. . . . . 6
β’ (π β ran
(Homf βπΆ) β V) |
18 | | ssidd 4004 |
. . . . . 6
β’ (π β ran
(Homf βπΆ) β ran (Homf
βπΆ)) |
19 | 3, 4, 14, 2, 17, 18 | oppchofcl 18209 |
. . . . 5
β’ (π β
(HomFβ(oppCatβπΆ)) β ((πΆ Γc
(oppCatβπΆ)) Func
(SetCatβran (Homf βπΆ)))) |
20 | 3, 11 | oppcbas 17659 |
. . . . 5
β’ π΅ =
(Baseβ(oppCatβπΆ)) |
21 | | yon11.h |
. . . . 5
β’ π» = (Hom βπΆ) |
22 | | eqid 2732 |
. . . . 5
β’
(Idβ(oppCatβπΆ)) = (Idβ(oppCatβπΆ)) |
23 | | yon11.p |
. . . . 5
β’ (π β π β π΅) |
24 | | yon11.z |
. . . . 5
β’ (π β π β π΅) |
25 | | yon2.f |
. . . . 5
β’ (π β πΉ β (ππ»π)) |
26 | | eqid 2732 |
. . . . 5
β’ ((π(2nd
β(β¨πΆ,
(oppCatβπΆ)β©
curryF (HomFβ(oppCatβπΆ))))π)βπΉ) = ((π(2nd β(β¨πΆ, (oppCatβπΆ)β© curryF
(HomFβ(oppCatβπΆ))))π)βπΉ) |
27 | | yon12.w |
. . . . 5
β’ (π β π β π΅) |
28 | 10, 11, 2, 13, 19, 20, 21, 22, 23, 24, 25, 26, 27 | curf2val 18179 |
. . . 4
β’ (π β (((π(2nd β(β¨πΆ, (oppCatβπΆ)β© curryF
(HomFβ(oppCatβπΆ))))π)βπΉ)βπ) = (πΉ(β¨π, πβ©(2nd
β(HomFβ(oppCatβπΆ)))β¨π, πβ©)((Idβ(oppCatβπΆ))βπ))) |
29 | 9, 28 | eqtrd 2772 |
. . 3
β’ (π β (((π(2nd βπ)π)βπΉ)βπ) = (πΉ(β¨π, πβ©(2nd
β(HomFβ(oppCatβπΆ)))β¨π, πβ©)((Idβ(oppCatβπΆ))βπ))) |
30 | 29 | fveq1d 6890 |
. 2
β’ (π β ((((π(2nd βπ)π)βπΉ)βπ)βπΊ) = ((πΉ(β¨π, πβ©(2nd
β(HomFβ(oppCatβπΆ)))β¨π, πβ©)((Idβ(oppCatβπΆ))βπ))βπΊ)) |
31 | | eqid 2732 |
. . 3
β’ (Hom
β(oppCatβπΆ)) =
(Hom β(oppCatβπΆ)) |
32 | | eqid 2732 |
. . 3
β’
(compβ(oppCatβπΆ)) = (compβ(oppCatβπΆ)) |
33 | 21, 3 | oppchom 17656 |
. . . 4
β’ (π(Hom β(oppCatβπΆ))π) = (ππ»π) |
34 | 25, 33 | eleqtrrdi 2844 |
. . 3
β’ (π β πΉ β (π(Hom β(oppCatβπΆ))π)) |
35 | 20, 31, 22, 13, 27 | catidcl 17622 |
. . 3
β’ (π β
((Idβ(oppCatβπΆ))βπ) β (π(Hom β(oppCatβπΆ))π)) |
36 | | yon2.g |
. . . 4
β’ (π β πΊ β (ππ»π)) |
37 | 21, 3 | oppchom 17656 |
. . . 4
β’ (π(Hom β(oppCatβπΆ))π) = (ππ»π) |
38 | 36, 37 | eleqtrrdi 2844 |
. . 3
β’ (π β πΊ β (π(Hom β(oppCatβπΆ))π)) |
39 | 4, 13, 20, 31, 23, 27, 24, 27, 32, 34, 35, 38 | hof2 18206 |
. 2
β’ (π β ((πΉ(β¨π, πβ©(2nd
β(HomFβ(oppCatβπΆ)))β¨π, πβ©)((Idβ(oppCatβπΆ))βπ))βπΊ) = ((((Idβ(oppCatβπΆ))βπ)(β¨π, πβ©(compβ(oppCatβπΆ))π)πΊ)(β¨π, πβ©(compβ(oppCatβπΆ))π)πΉ)) |
40 | 20, 31, 22, 13, 23, 32, 27, 38 | catlid 17623 |
. . . 4
β’ (π β
(((Idβ(oppCatβπΆ))βπ)(β¨π, πβ©(compβ(oppCatβπΆ))π)πΊ) = πΊ) |
41 | 40 | oveq1d 7420 |
. . 3
β’ (π β
((((Idβ(oppCatβπΆ))βπ)(β¨π, πβ©(compβ(oppCatβπΆ))π)πΊ)(β¨π, πβ©(compβ(oppCatβπΆ))π)πΉ) = (πΊ(β¨π, πβ©(compβ(oppCatβπΆ))π)πΉ)) |
42 | | yon12.x |
. . . 4
β’ Β· =
(compβπΆ) |
43 | 11, 42, 3, 24, 23, 27 | oppcco 17658 |
. . 3
β’ (π β (πΊ(β¨π, πβ©(compβ(oppCatβπΆ))π)πΉ) = (πΉ(β¨π, πβ© Β· π)πΊ)) |
44 | 41, 43 | eqtrd 2772 |
. 2
β’ (π β
((((Idβ(oppCatβπΆ))βπ)(β¨π, πβ©(compβ(oppCatβπΆ))π)πΊ)(β¨π, πβ©(compβ(oppCatβπΆ))π)πΉ) = (πΉ(β¨π, πβ© Β· π)πΊ)) |
45 | 30, 39, 44 | 3eqtrd 2776 |
1
β’ (π β ((((π(2nd βπ)π)βπΉ)βπ)βπΊ) = (πΉ(β¨π, πβ© Β· π)πΊ)) |