Proof of Theorem yon12
Step | Hyp | Ref
| Expression |
1 | | yon11.y |
. . . . . . . . . 10
⊢ 𝑌 = (Yon‘𝐶) |
2 | | yon11.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ Cat) |
3 | | eqid 2738 |
. . . . . . . . . 10
⊢
(oppCat‘𝐶) =
(oppCat‘𝐶) |
4 | | eqid 2738 |
. . . . . . . . . 10
⊢
(HomF‘(oppCat‘𝐶)) =
(HomF‘(oppCat‘𝐶)) |
5 | 1, 2, 3, 4 | yonval 17895 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 = (〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶)))) |
6 | 5 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝑌) = (1st
‘(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))))) |
7 | 6 | fveq1d 6758 |
. . . . . . 7
⊢ (𝜑 → ((1st
‘𝑌)‘𝑋) = ((1st
‘(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))))‘𝑋)) |
8 | 7 | fveq2d 6760 |
. . . . . 6
⊢ (𝜑 → (2nd
‘((1st ‘𝑌)‘𝑋)) = (2nd ‘((1st
‘(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))))‘𝑋))) |
9 | 8 | oveqd 7272 |
. . . . 5
⊢ (𝜑 → (𝑍(2nd ‘((1st
‘𝑌)‘𝑋))𝑊) = (𝑍(2nd ‘((1st
‘(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))))‘𝑋))𝑊)) |
10 | 9 | fveq1d 6758 |
. . . 4
⊢ (𝜑 → ((𝑍(2nd ‘((1st
‘𝑌)‘𝑋))𝑊)‘𝐹) = ((𝑍(2nd ‘((1st
‘(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))))‘𝑋))𝑊)‘𝐹)) |
11 | | eqid 2738 |
. . . . 5
⊢
(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))) = (〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))) |
12 | | yon11.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
13 | 3 | oppccat 17350 |
. . . . . 6
⊢ (𝐶 ∈ Cat →
(oppCat‘𝐶) ∈
Cat) |
14 | 2, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
15 | | eqid 2738 |
. . . . . 6
⊢
(SetCat‘ran (Homf ‘𝐶)) = (SetCat‘ran
(Homf ‘𝐶)) |
16 | | fvex 6769 |
. . . . . . . 8
⊢
(Homf ‘𝐶) ∈ V |
17 | 16 | rnex 7733 |
. . . . . . 7
⊢ ran
(Homf ‘𝐶) ∈ V |
18 | 17 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ran
(Homf ‘𝐶) ∈ V) |
19 | | ssidd 3940 |
. . . . . 6
⊢ (𝜑 → ran
(Homf ‘𝐶) ⊆ ran (Homf
‘𝐶)) |
20 | 3, 4, 15, 2, 18, 19 | oppchofcl 17894 |
. . . . 5
⊢ (𝜑 →
(HomF‘(oppCat‘𝐶)) ∈ ((𝐶 ×c
(oppCat‘𝐶)) Func
(SetCat‘ran (Homf ‘𝐶)))) |
21 | 3, 12 | oppcbas 17345 |
. . . . 5
⊢ 𝐵 =
(Base‘(oppCat‘𝐶)) |
22 | | yon11.p |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
23 | | eqid 2738 |
. . . . 5
⊢
((1st ‘(〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))))‘𝑋) = ((1st ‘(〈𝐶, (oppCat‘𝐶)〉 curryF
(HomF‘(oppCat‘𝐶))))‘𝑋) |
24 | | yon11.z |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
25 | | eqid 2738 |
. . . . 5
⊢ (Hom
‘(oppCat‘𝐶)) =
(Hom ‘(oppCat‘𝐶)) |
26 | | eqid 2738 |
. . . . 5
⊢
(Id‘𝐶) =
(Id‘𝐶) |
27 | | yon12.w |
. . . . 5
⊢ (𝜑 → 𝑊 ∈ 𝐵) |
28 | | yon12.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝑊𝐻𝑍)) |
29 | | yon11.h |
. . . . . . 7
⊢ 𝐻 = (Hom ‘𝐶) |
30 | 29, 3 | oppchom 17342 |
. . . . . 6
⊢ (𝑍(Hom ‘(oppCat‘𝐶))𝑊) = (𝑊𝐻𝑍) |
31 | 28, 30 | eleqtrrdi 2850 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑊)) |
32 | 11, 12, 2, 14, 20, 21, 22, 23, 24, 25, 26, 27, 31 | curf12 17861 |
. . . 4
⊢ (𝜑 → ((𝑍(2nd ‘((1st
‘(〈𝐶,
(oppCat‘𝐶)〉
curryF (HomF‘(oppCat‘𝐶))))‘𝑋))𝑊)‘𝐹) = (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑍〉(2nd
‘(HomF‘(oppCat‘𝐶)))〈𝑋, 𝑊〉)𝐹)) |
33 | 10, 32 | eqtrd 2778 |
. . 3
⊢ (𝜑 → ((𝑍(2nd ‘((1st
‘𝑌)‘𝑋))𝑊)‘𝐹) = (((Id‘𝐶)‘𝑋)(〈𝑋, 𝑍〉(2nd
‘(HomF‘(oppCat‘𝐶)))〈𝑋, 𝑊〉)𝐹)) |
34 | 33 | fveq1d 6758 |
. 2
⊢ (𝜑 → (((𝑍(2nd ‘((1st
‘𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = ((((Id‘𝐶)‘𝑋)(〈𝑋, 𝑍〉(2nd
‘(HomF‘(oppCat‘𝐶)))〈𝑋, 𝑊〉)𝐹)‘𝐺)) |
35 | | eqid 2738 |
. . 3
⊢
(comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶)) |
36 | 12, 29, 26, 2, 22 | catidcl 17308 |
. . . 4
⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋)) |
37 | 29, 3 | oppchom 17342 |
. . . 4
⊢ (𝑋(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑋) |
38 | 36, 37 | eleqtrrdi 2850 |
. . 3
⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘(oppCat‘𝐶))𝑋)) |
39 | | yon12.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (𝑍𝐻𝑋)) |
40 | 29, 3 | oppchom 17342 |
. . . 4
⊢ (𝑋(Hom ‘(oppCat‘𝐶))𝑍) = (𝑍𝐻𝑋) |
41 | 39, 40 | eleqtrrdi 2850 |
. . 3
⊢ (𝜑 → 𝐺 ∈ (𝑋(Hom ‘(oppCat‘𝐶))𝑍)) |
42 | 4, 14, 21, 25, 22, 24, 22, 27, 35, 38, 31, 41 | hof2 17891 |
. 2
⊢ (𝜑 → ((((Id‘𝐶)‘𝑋)(〈𝑋, 𝑍〉(2nd
‘(HomF‘(oppCat‘𝐶)))〈𝑋, 𝑊〉)𝐹)‘𝐺) = ((𝐹(〈𝑋, 𝑍〉(comp‘(oppCat‘𝐶))𝑊)𝐺)(〈𝑋, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋))) |
43 | | yon12.x |
. . . . 5
⊢ · =
(comp‘𝐶) |
44 | 12, 43, 3, 22, 24, 27 | oppcco 17344 |
. . . 4
⊢ (𝜑 → (𝐹(〈𝑋, 𝑍〉(comp‘(oppCat‘𝐶))𝑊)𝐺) = (𝐺(〈𝑊, 𝑍〉 · 𝑋)𝐹)) |
45 | 44 | oveq1d 7270 |
. . 3
⊢ (𝜑 → ((𝐹(〈𝑋, 𝑍〉(comp‘(oppCat‘𝐶))𝑊)𝐺)(〈𝑋, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)) = ((𝐺(〈𝑊, 𝑍〉 · 𝑋)𝐹)(〈𝑋, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋))) |
46 | 12, 43, 3, 22, 22, 27 | oppcco 17344 |
. . 3
⊢ (𝜑 → ((𝐺(〈𝑊, 𝑍〉 · 𝑋)𝐹)(〈𝑋, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)) = (((Id‘𝐶)‘𝑋)(〈𝑊, 𝑋〉 · 𝑋)(𝐺(〈𝑊, 𝑍〉 · 𝑋)𝐹))) |
47 | 12, 29, 43, 2, 27, 24, 22, 28, 39 | catcocl 17311 |
. . . 4
⊢ (𝜑 → (𝐺(〈𝑊, 𝑍〉 · 𝑋)𝐹) ∈ (𝑊𝐻𝑋)) |
48 | 12, 29, 26, 2, 27, 43, 22, 47 | catlid 17309 |
. . 3
⊢ (𝜑 → (((Id‘𝐶)‘𝑋)(〈𝑊, 𝑋〉 · 𝑋)(𝐺(〈𝑊, 𝑍〉 · 𝑋)𝐹)) = (𝐺(〈𝑊, 𝑍〉 · 𝑋)𝐹)) |
49 | 45, 46, 48 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → ((𝐹(〈𝑋, 𝑍〉(comp‘(oppCat‘𝐶))𝑊)𝐺)(〈𝑋, 𝑋〉(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)) = (𝐺(〈𝑊, 𝑍〉 · 𝑋)𝐹)) |
50 | 34, 42, 49 | 3eqtrd 2782 |
1
⊢ (𝜑 → (((𝑍(2nd ‘((1st
‘𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = (𝐺(〈𝑊, 𝑍〉 · 𝑋)𝐹)) |