MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yon12 Structured version   Visualization version   GIF version

Theorem yon12 17509
Description: Value of the Yoneda embedding at a morphism. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
yon11.y 𝑌 = (Yon‘𝐶)
yon11.b 𝐵 = (Base‘𝐶)
yon11.c (𝜑𝐶 ∈ Cat)
yon11.p (𝜑𝑋𝐵)
yon11.h 𝐻 = (Hom ‘𝐶)
yon11.z (𝜑𝑍𝐵)
yon12.x · = (comp‘𝐶)
yon12.w (𝜑𝑊𝐵)
yon12.f (𝜑𝐹 ∈ (𝑊𝐻𝑍))
yon12.g (𝜑𝐺 ∈ (𝑍𝐻𝑋))
Assertion
Ref Expression
yon12 (𝜑 → (((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))

Proof of Theorem yon12
StepHypRef Expression
1 yon11.y . . . . . . . . . 10 𝑌 = (Yon‘𝐶)
2 yon11.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
3 eqid 2821 . . . . . . . . . 10 (oppCat‘𝐶) = (oppCat‘𝐶)
4 eqid 2821 . . . . . . . . . 10 (HomF‘(oppCat‘𝐶)) = (HomF‘(oppCat‘𝐶))
51, 2, 3, 4yonval 17505 . . . . . . . . 9 (𝜑𝑌 = (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))
65fveq2d 6669 . . . . . . . 8 (𝜑 → (1st𝑌) = (1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶)))))
76fveq1d 6667 . . . . . . 7 (𝜑 → ((1st𝑌)‘𝑋) = ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))
87fveq2d 6669 . . . . . 6 (𝜑 → (2nd ‘((1st𝑌)‘𝑋)) = (2nd ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋)))
98oveqd 7167 . . . . 5 (𝜑 → (𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊) = (𝑍(2nd ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))𝑊))
109fveq1d 6667 . . . 4 (𝜑 → ((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹) = ((𝑍(2nd ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))𝑊)‘𝐹))
11 eqid 2821 . . . . 5 (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))) = (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶)))
12 yon11.b . . . . 5 𝐵 = (Base‘𝐶)
133oppccat 16986 . . . . . 6 (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat)
142, 13syl 17 . . . . 5 (𝜑 → (oppCat‘𝐶) ∈ Cat)
15 eqid 2821 . . . . . 6 (SetCat‘ran (Homf𝐶)) = (SetCat‘ran (Homf𝐶))
16 fvex 6678 . . . . . . . 8 (Homf𝐶) ∈ V
1716rnex 7611 . . . . . . 7 ran (Homf𝐶) ∈ V
1817a1i 11 . . . . . 6 (𝜑 → ran (Homf𝐶) ∈ V)
19 ssidd 3990 . . . . . 6 (𝜑 → ran (Homf𝐶) ⊆ ran (Homf𝐶))
203, 4, 15, 2, 18, 19oppchofcl 17504 . . . . 5 (𝜑 → (HomF‘(oppCat‘𝐶)) ∈ ((𝐶 ×c (oppCat‘𝐶)) Func (SetCat‘ran (Homf𝐶))))
213, 12oppcbas 16982 . . . . 5 𝐵 = (Base‘(oppCat‘𝐶))
22 yon11.p . . . . 5 (𝜑𝑋𝐵)
23 eqid 2821 . . . . 5 ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋) = ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋)
24 yon11.z . . . . 5 (𝜑𝑍𝐵)
25 eqid 2821 . . . . 5 (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶))
26 eqid 2821 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
27 yon12.w . . . . 5 (𝜑𝑊𝐵)
28 yon12.f . . . . . 6 (𝜑𝐹 ∈ (𝑊𝐻𝑍))
29 yon11.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
3029, 3oppchom 16979 . . . . . 6 (𝑍(Hom ‘(oppCat‘𝐶))𝑊) = (𝑊𝐻𝑍)
3128, 30eleqtrrdi 2924 . . . . 5 (𝜑𝐹 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑊))
3211, 12, 2, 14, 20, 21, 22, 23, 24, 25, 26, 27, 31curf12 17471 . . . 4 (𝜑 → ((𝑍(2nd ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))𝑊)‘𝐹) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑍⟩(2nd ‘(HomF‘(oppCat‘𝐶)))⟨𝑋, 𝑊⟩)𝐹))
3310, 32eqtrd 2856 . . 3 (𝜑 → ((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑍⟩(2nd ‘(HomF‘(oppCat‘𝐶)))⟨𝑋, 𝑊⟩)𝐹))
3433fveq1d 6667 . 2 (𝜑 → (((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = ((((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑍⟩(2nd ‘(HomF‘(oppCat‘𝐶)))⟨𝑋, 𝑊⟩)𝐹)‘𝐺))
35 eqid 2821 . . 3 (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶))
3612, 29, 26, 2, 22catidcl 16947 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
3729, 3oppchom 16979 . . . 4 (𝑋(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑋)
3836, 37eleqtrrdi 2924 . . 3 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘(oppCat‘𝐶))𝑋))
39 yon12.g . . . 4 (𝜑𝐺 ∈ (𝑍𝐻𝑋))
4029, 3oppchom 16979 . . . 4 (𝑋(Hom ‘(oppCat‘𝐶))𝑍) = (𝑍𝐻𝑋)
4139, 40eleqtrrdi 2924 . . 3 (𝜑𝐺 ∈ (𝑋(Hom ‘(oppCat‘𝐶))𝑍))
424, 14, 21, 25, 22, 24, 22, 27, 35, 38, 31, 41hof2 17501 . 2 (𝜑 → ((((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑍⟩(2nd ‘(HomF‘(oppCat‘𝐶)))⟨𝑋, 𝑊⟩)𝐹)‘𝐺) = ((𝐹(⟨𝑋, 𝑍⟩(comp‘(oppCat‘𝐶))𝑊)𝐺)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)))
43 yon12.x . . . . 5 · = (comp‘𝐶)
4412, 43, 3, 22, 24, 27oppcco 16981 . . . 4 (𝜑 → (𝐹(⟨𝑋, 𝑍⟩(comp‘(oppCat‘𝐶))𝑊)𝐺) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))
4544oveq1d 7165 . . 3 (𝜑 → ((𝐹(⟨𝑋, 𝑍⟩(comp‘(oppCat‘𝐶))𝑊)𝐺)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)) = ((𝐺(⟨𝑊, 𝑍· 𝑋)𝐹)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)))
4612, 43, 3, 22, 22, 27oppcco 16981 . . 3 (𝜑 → ((𝐺(⟨𝑊, 𝑍· 𝑋)𝐹)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)) = (((Id‘𝐶)‘𝑋)(⟨𝑊, 𝑋· 𝑋)(𝐺(⟨𝑊, 𝑍· 𝑋)𝐹)))
4712, 29, 43, 2, 27, 24, 22, 28, 39catcocl 16950 . . . 4 (𝜑 → (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹) ∈ (𝑊𝐻𝑋))
4812, 29, 26, 2, 27, 43, 22, 47catlid 16948 . . 3 (𝜑 → (((Id‘𝐶)‘𝑋)(⟨𝑊, 𝑋· 𝑋)(𝐺(⟨𝑊, 𝑍· 𝑋)𝐹)) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))
4945, 46, 483eqtrd 2860 . 2 (𝜑 → ((𝐹(⟨𝑋, 𝑍⟩(comp‘(oppCat‘𝐶))𝑊)𝐺)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))
5034, 42, 493eqtrd 2860 1 (𝜑 → (((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  Vcvv 3495  cop 4567  ran crn 5551  cfv 6350  (class class class)co 7150  1st c1st 7681  2nd c2nd 7682  Basecbs 16477  Hom chom 16570  compcco 16571  Catccat 16929  Idccid 16930  Homf chomf 16931  oppCatcoppc 16975  SetCatcsetc 17329   curryF ccurf 17454  HomFchof 17492  Yoncyon 17493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-hom 16583  df-cco 16584  df-cat 16933  df-cid 16934  df-homf 16935  df-comf 16936  df-oppc 16976  df-func 17122  df-setc 17330  df-xpc 17416  df-curf 17458  df-hof 17494  df-yon 17495
This theorem is referenced by:  yonedalem4c  17521  yonedalem3b  17523  yonedainv  17525  yonffthlem  17526
  Copyright terms: Public domain W3C validator