MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yon12 Structured version   Visualization version   GIF version

Theorem yon12 18214
Description: Value of the Yoneda embedding at a morphism. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
yon11.y π‘Œ = (Yonβ€˜πΆ)
yon11.b 𝐡 = (Baseβ€˜πΆ)
yon11.c (πœ‘ β†’ 𝐢 ∈ Cat)
yon11.p (πœ‘ β†’ 𝑋 ∈ 𝐡)
yon11.h 𝐻 = (Hom β€˜πΆ)
yon11.z (πœ‘ β†’ 𝑍 ∈ 𝐡)
yon12.x Β· = (compβ€˜πΆ)
yon12.w (πœ‘ β†’ π‘Š ∈ 𝐡)
yon12.f (πœ‘ β†’ 𝐹 ∈ (π‘Šπ»π‘))
yon12.g (πœ‘ β†’ 𝐺 ∈ (𝑍𝐻𝑋))
Assertion
Ref Expression
yon12 (πœ‘ β†’ (((𝑍(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))π‘Š)β€˜πΉ)β€˜πΊ) = (𝐺(βŸ¨π‘Š, π‘βŸ© Β· 𝑋)𝐹))

Proof of Theorem yon12
StepHypRef Expression
1 yon11.y . . . . . . . . . 10 π‘Œ = (Yonβ€˜πΆ)
2 yon11.c . . . . . . . . . 10 (πœ‘ β†’ 𝐢 ∈ Cat)
3 eqid 2732 . . . . . . . . . 10 (oppCatβ€˜πΆ) = (oppCatβ€˜πΆ)
4 eqid 2732 . . . . . . . . . 10 (HomFβ€˜(oppCatβ€˜πΆ)) = (HomFβ€˜(oppCatβ€˜πΆ))
51, 2, 3, 4yonval 18210 . . . . . . . . 9 (πœ‘ β†’ π‘Œ = (⟨𝐢, (oppCatβ€˜πΆ)⟩ curryF (HomFβ€˜(oppCatβ€˜πΆ))))
65fveq2d 6892 . . . . . . . 8 (πœ‘ β†’ (1st β€˜π‘Œ) = (1st β€˜(⟨𝐢, (oppCatβ€˜πΆ)⟩ curryF (HomFβ€˜(oppCatβ€˜πΆ)))))
76fveq1d 6890 . . . . . . 7 (πœ‘ β†’ ((1st β€˜π‘Œ)β€˜π‘‹) = ((1st β€˜(⟨𝐢, (oppCatβ€˜πΆ)⟩ curryF (HomFβ€˜(oppCatβ€˜πΆ))))β€˜π‘‹))
87fveq2d 6892 . . . . . 6 (πœ‘ β†’ (2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹)) = (2nd β€˜((1st β€˜(⟨𝐢, (oppCatβ€˜πΆ)⟩ curryF (HomFβ€˜(oppCatβ€˜πΆ))))β€˜π‘‹)))
98oveqd 7422 . . . . 5 (πœ‘ β†’ (𝑍(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))π‘Š) = (𝑍(2nd β€˜((1st β€˜(⟨𝐢, (oppCatβ€˜πΆ)⟩ curryF (HomFβ€˜(oppCatβ€˜πΆ))))β€˜π‘‹))π‘Š))
109fveq1d 6890 . . . 4 (πœ‘ β†’ ((𝑍(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))π‘Š)β€˜πΉ) = ((𝑍(2nd β€˜((1st β€˜(⟨𝐢, (oppCatβ€˜πΆ)⟩ curryF (HomFβ€˜(oppCatβ€˜πΆ))))β€˜π‘‹))π‘Š)β€˜πΉ))
11 eqid 2732 . . . . 5 (⟨𝐢, (oppCatβ€˜πΆ)⟩ curryF (HomFβ€˜(oppCatβ€˜πΆ))) = (⟨𝐢, (oppCatβ€˜πΆ)⟩ curryF (HomFβ€˜(oppCatβ€˜πΆ)))
12 yon11.b . . . . 5 𝐡 = (Baseβ€˜πΆ)
133oppccat 17664 . . . . . 6 (𝐢 ∈ Cat β†’ (oppCatβ€˜πΆ) ∈ Cat)
142, 13syl 17 . . . . 5 (πœ‘ β†’ (oppCatβ€˜πΆ) ∈ Cat)
15 eqid 2732 . . . . . 6 (SetCatβ€˜ran (Homf β€˜πΆ)) = (SetCatβ€˜ran (Homf β€˜πΆ))
16 fvex 6901 . . . . . . . 8 (Homf β€˜πΆ) ∈ V
1716rnex 7899 . . . . . . 7 ran (Homf β€˜πΆ) ∈ V
1817a1i 11 . . . . . 6 (πœ‘ β†’ ran (Homf β€˜πΆ) ∈ V)
19 ssidd 4004 . . . . . 6 (πœ‘ β†’ ran (Homf β€˜πΆ) βŠ† ran (Homf β€˜πΆ))
203, 4, 15, 2, 18, 19oppchofcl 18209 . . . . 5 (πœ‘ β†’ (HomFβ€˜(oppCatβ€˜πΆ)) ∈ ((𝐢 Γ—c (oppCatβ€˜πΆ)) Func (SetCatβ€˜ran (Homf β€˜πΆ))))
213, 12oppcbas 17659 . . . . 5 𝐡 = (Baseβ€˜(oppCatβ€˜πΆ))
22 yon11.p . . . . 5 (πœ‘ β†’ 𝑋 ∈ 𝐡)
23 eqid 2732 . . . . 5 ((1st β€˜(⟨𝐢, (oppCatβ€˜πΆ)⟩ curryF (HomFβ€˜(oppCatβ€˜πΆ))))β€˜π‘‹) = ((1st β€˜(⟨𝐢, (oppCatβ€˜πΆ)⟩ curryF (HomFβ€˜(oppCatβ€˜πΆ))))β€˜π‘‹)
24 yon11.z . . . . 5 (πœ‘ β†’ 𝑍 ∈ 𝐡)
25 eqid 2732 . . . . 5 (Hom β€˜(oppCatβ€˜πΆ)) = (Hom β€˜(oppCatβ€˜πΆ))
26 eqid 2732 . . . . 5 (Idβ€˜πΆ) = (Idβ€˜πΆ)
27 yon12.w . . . . 5 (πœ‘ β†’ π‘Š ∈ 𝐡)
28 yon12.f . . . . . 6 (πœ‘ β†’ 𝐹 ∈ (π‘Šπ»π‘))
29 yon11.h . . . . . . 7 𝐻 = (Hom β€˜πΆ)
3029, 3oppchom 17656 . . . . . 6 (𝑍(Hom β€˜(oppCatβ€˜πΆ))π‘Š) = (π‘Šπ»π‘)
3128, 30eleqtrrdi 2844 . . . . 5 (πœ‘ β†’ 𝐹 ∈ (𝑍(Hom β€˜(oppCatβ€˜πΆ))π‘Š))
3211, 12, 2, 14, 20, 21, 22, 23, 24, 25, 26, 27, 31curf12 18176 . . . 4 (πœ‘ β†’ ((𝑍(2nd β€˜((1st β€˜(⟨𝐢, (oppCatβ€˜πΆ)⟩ curryF (HomFβ€˜(oppCatβ€˜πΆ))))β€˜π‘‹))π‘Š)β€˜πΉ) = (((Idβ€˜πΆ)β€˜π‘‹)(βŸ¨π‘‹, π‘βŸ©(2nd β€˜(HomFβ€˜(oppCatβ€˜πΆ)))βŸ¨π‘‹, π‘ŠβŸ©)𝐹))
3310, 32eqtrd 2772 . . 3 (πœ‘ β†’ ((𝑍(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))π‘Š)β€˜πΉ) = (((Idβ€˜πΆ)β€˜π‘‹)(βŸ¨π‘‹, π‘βŸ©(2nd β€˜(HomFβ€˜(oppCatβ€˜πΆ)))βŸ¨π‘‹, π‘ŠβŸ©)𝐹))
3433fveq1d 6890 . 2 (πœ‘ β†’ (((𝑍(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))π‘Š)β€˜πΉ)β€˜πΊ) = ((((Idβ€˜πΆ)β€˜π‘‹)(βŸ¨π‘‹, π‘βŸ©(2nd β€˜(HomFβ€˜(oppCatβ€˜πΆ)))βŸ¨π‘‹, π‘ŠβŸ©)𝐹)β€˜πΊ))
35 eqid 2732 . . 3 (compβ€˜(oppCatβ€˜πΆ)) = (compβ€˜(oppCatβ€˜πΆ))
3612, 29, 26, 2, 22catidcl 17622 . . . 4 (πœ‘ β†’ ((Idβ€˜πΆ)β€˜π‘‹) ∈ (𝑋𝐻𝑋))
3729, 3oppchom 17656 . . . 4 (𝑋(Hom β€˜(oppCatβ€˜πΆ))𝑋) = (𝑋𝐻𝑋)
3836, 37eleqtrrdi 2844 . . 3 (πœ‘ β†’ ((Idβ€˜πΆ)β€˜π‘‹) ∈ (𝑋(Hom β€˜(oppCatβ€˜πΆ))𝑋))
39 yon12.g . . . 4 (πœ‘ β†’ 𝐺 ∈ (𝑍𝐻𝑋))
4029, 3oppchom 17656 . . . 4 (𝑋(Hom β€˜(oppCatβ€˜πΆ))𝑍) = (𝑍𝐻𝑋)
4139, 40eleqtrrdi 2844 . . 3 (πœ‘ β†’ 𝐺 ∈ (𝑋(Hom β€˜(oppCatβ€˜πΆ))𝑍))
424, 14, 21, 25, 22, 24, 22, 27, 35, 38, 31, 41hof2 18206 . 2 (πœ‘ β†’ ((((Idβ€˜πΆ)β€˜π‘‹)(βŸ¨π‘‹, π‘βŸ©(2nd β€˜(HomFβ€˜(oppCatβ€˜πΆ)))βŸ¨π‘‹, π‘ŠβŸ©)𝐹)β€˜πΊ) = ((𝐹(βŸ¨π‘‹, π‘βŸ©(compβ€˜(oppCatβ€˜πΆ))π‘Š)𝐺)(βŸ¨π‘‹, π‘‹βŸ©(compβ€˜(oppCatβ€˜πΆ))π‘Š)((Idβ€˜πΆ)β€˜π‘‹)))
43 yon12.x . . . . 5 Β· = (compβ€˜πΆ)
4412, 43, 3, 22, 24, 27oppcco 17658 . . . 4 (πœ‘ β†’ (𝐹(βŸ¨π‘‹, π‘βŸ©(compβ€˜(oppCatβ€˜πΆ))π‘Š)𝐺) = (𝐺(βŸ¨π‘Š, π‘βŸ© Β· 𝑋)𝐹))
4544oveq1d 7420 . . 3 (πœ‘ β†’ ((𝐹(βŸ¨π‘‹, π‘βŸ©(compβ€˜(oppCatβ€˜πΆ))π‘Š)𝐺)(βŸ¨π‘‹, π‘‹βŸ©(compβ€˜(oppCatβ€˜πΆ))π‘Š)((Idβ€˜πΆ)β€˜π‘‹)) = ((𝐺(βŸ¨π‘Š, π‘βŸ© Β· 𝑋)𝐹)(βŸ¨π‘‹, π‘‹βŸ©(compβ€˜(oppCatβ€˜πΆ))π‘Š)((Idβ€˜πΆ)β€˜π‘‹)))
4612, 43, 3, 22, 22, 27oppcco 17658 . . 3 (πœ‘ β†’ ((𝐺(βŸ¨π‘Š, π‘βŸ© Β· 𝑋)𝐹)(βŸ¨π‘‹, π‘‹βŸ©(compβ€˜(oppCatβ€˜πΆ))π‘Š)((Idβ€˜πΆ)β€˜π‘‹)) = (((Idβ€˜πΆ)β€˜π‘‹)(βŸ¨π‘Š, π‘‹βŸ© Β· 𝑋)(𝐺(βŸ¨π‘Š, π‘βŸ© Β· 𝑋)𝐹)))
4712, 29, 43, 2, 27, 24, 22, 28, 39catcocl 17625 . . . 4 (πœ‘ β†’ (𝐺(βŸ¨π‘Š, π‘βŸ© Β· 𝑋)𝐹) ∈ (π‘Šπ»π‘‹))
4812, 29, 26, 2, 27, 43, 22, 47catlid 17623 . . 3 (πœ‘ β†’ (((Idβ€˜πΆ)β€˜π‘‹)(βŸ¨π‘Š, π‘‹βŸ© Β· 𝑋)(𝐺(βŸ¨π‘Š, π‘βŸ© Β· 𝑋)𝐹)) = (𝐺(βŸ¨π‘Š, π‘βŸ© Β· 𝑋)𝐹))
4945, 46, 483eqtrd 2776 . 2 (πœ‘ β†’ ((𝐹(βŸ¨π‘‹, π‘βŸ©(compβ€˜(oppCatβ€˜πΆ))π‘Š)𝐺)(βŸ¨π‘‹, π‘‹βŸ©(compβ€˜(oppCatβ€˜πΆ))π‘Š)((Idβ€˜πΆ)β€˜π‘‹)) = (𝐺(βŸ¨π‘Š, π‘βŸ© Β· 𝑋)𝐹))
5034, 42, 493eqtrd 2776 1 (πœ‘ β†’ (((𝑍(2nd β€˜((1st β€˜π‘Œ)β€˜π‘‹))π‘Š)β€˜πΉ)β€˜πΊ) = (𝐺(βŸ¨π‘Š, π‘βŸ© Β· 𝑋)𝐹))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βŸ¨cop 4633  ran crn 5676  β€˜cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  Basecbs 17140  Hom chom 17204  compcco 17205  Catccat 17604  Idccid 17605  Homf chomf 17606  oppCatcoppc 17651  SetCatcsetc 18021   curryF ccurf 18159  HomFchof 18197  Yoncyon 18198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-hom 17217  df-cco 17218  df-cat 17608  df-cid 17609  df-homf 17610  df-comf 17611  df-oppc 17652  df-func 17804  df-setc 18022  df-xpc 18120  df-curf 18163  df-hof 18199  df-yon 18200
This theorem is referenced by:  yonedalem4c  18226  yonedalem3b  18228  yonedainv  18230  yonffthlem  18231
  Copyright terms: Public domain W3C validator