MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yon12 Structured version   Visualization version   GIF version

Theorem yon12 18189
Description: Value of the Yoneda embedding at a morphism. The partially evaluated Yoneda embedding is also the contravariant Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
yon11.y 𝑌 = (Yon‘𝐶)
yon11.b 𝐵 = (Base‘𝐶)
yon11.c (𝜑𝐶 ∈ Cat)
yon11.p (𝜑𝑋𝐵)
yon11.h 𝐻 = (Hom ‘𝐶)
yon11.z (𝜑𝑍𝐵)
yon12.x · = (comp‘𝐶)
yon12.w (𝜑𝑊𝐵)
yon12.f (𝜑𝐹 ∈ (𝑊𝐻𝑍))
yon12.g (𝜑𝐺 ∈ (𝑍𝐻𝑋))
Assertion
Ref Expression
yon12 (𝜑 → (((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))

Proof of Theorem yon12
StepHypRef Expression
1 yon11.y . . . . . . . . . 10 𝑌 = (Yon‘𝐶)
2 yon11.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
3 eqid 2729 . . . . . . . . . 10 (oppCat‘𝐶) = (oppCat‘𝐶)
4 eqid 2729 . . . . . . . . . 10 (HomF‘(oppCat‘𝐶)) = (HomF‘(oppCat‘𝐶))
51, 2, 3, 4yonval 18185 . . . . . . . . 9 (𝜑𝑌 = (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))
65fveq2d 6830 . . . . . . . 8 (𝜑 → (1st𝑌) = (1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶)))))
76fveq1d 6828 . . . . . . 7 (𝜑 → ((1st𝑌)‘𝑋) = ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))
87fveq2d 6830 . . . . . 6 (𝜑 → (2nd ‘((1st𝑌)‘𝑋)) = (2nd ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋)))
98oveqd 7370 . . . . 5 (𝜑 → (𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊) = (𝑍(2nd ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))𝑊))
109fveq1d 6828 . . . 4 (𝜑 → ((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹) = ((𝑍(2nd ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))𝑊)‘𝐹))
11 eqid 2729 . . . . 5 (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))) = (⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶)))
12 yon11.b . . . . 5 𝐵 = (Base‘𝐶)
133oppccat 17646 . . . . . 6 (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat)
142, 13syl 17 . . . . 5 (𝜑 → (oppCat‘𝐶) ∈ Cat)
15 eqid 2729 . . . . . 6 (SetCat‘ran (Homf𝐶)) = (SetCat‘ran (Homf𝐶))
16 fvex 6839 . . . . . . . 8 (Homf𝐶) ∈ V
1716rnex 7850 . . . . . . 7 ran (Homf𝐶) ∈ V
1817a1i 11 . . . . . 6 (𝜑 → ran (Homf𝐶) ∈ V)
19 ssidd 3961 . . . . . 6 (𝜑 → ran (Homf𝐶) ⊆ ran (Homf𝐶))
203, 4, 15, 2, 18, 19oppchofcl 18184 . . . . 5 (𝜑 → (HomF‘(oppCat‘𝐶)) ∈ ((𝐶 ×c (oppCat‘𝐶)) Func (SetCat‘ran (Homf𝐶))))
213, 12oppcbas 17642 . . . . 5 𝐵 = (Base‘(oppCat‘𝐶))
22 yon11.p . . . . 5 (𝜑𝑋𝐵)
23 eqid 2729 . . . . 5 ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋) = ((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋)
24 yon11.z . . . . 5 (𝜑𝑍𝐵)
25 eqid 2729 . . . . 5 (Hom ‘(oppCat‘𝐶)) = (Hom ‘(oppCat‘𝐶))
26 eqid 2729 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
27 yon12.w . . . . 5 (𝜑𝑊𝐵)
28 yon12.f . . . . . 6 (𝜑𝐹 ∈ (𝑊𝐻𝑍))
29 yon11.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
3029, 3oppchom 17639 . . . . . 6 (𝑍(Hom ‘(oppCat‘𝐶))𝑊) = (𝑊𝐻𝑍)
3128, 30eleqtrrdi 2839 . . . . 5 (𝜑𝐹 ∈ (𝑍(Hom ‘(oppCat‘𝐶))𝑊))
3211, 12, 2, 14, 20, 21, 22, 23, 24, 25, 26, 27, 31curf12 18151 . . . 4 (𝜑 → ((𝑍(2nd ‘((1st ‘(⟨𝐶, (oppCat‘𝐶)⟩ curryF (HomF‘(oppCat‘𝐶))))‘𝑋))𝑊)‘𝐹) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑍⟩(2nd ‘(HomF‘(oppCat‘𝐶)))⟨𝑋, 𝑊⟩)𝐹))
3310, 32eqtrd 2764 . . 3 (𝜑 → ((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑍⟩(2nd ‘(HomF‘(oppCat‘𝐶)))⟨𝑋, 𝑊⟩)𝐹))
3433fveq1d 6828 . 2 (𝜑 → (((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = ((((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑍⟩(2nd ‘(HomF‘(oppCat‘𝐶)))⟨𝑋, 𝑊⟩)𝐹)‘𝐺))
35 eqid 2729 . . 3 (comp‘(oppCat‘𝐶)) = (comp‘(oppCat‘𝐶))
3612, 29, 26, 2, 22catidcl 17606 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
3729, 3oppchom 17639 . . . 4 (𝑋(Hom ‘(oppCat‘𝐶))𝑋) = (𝑋𝐻𝑋)
3836, 37eleqtrrdi 2839 . . 3 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘(oppCat‘𝐶))𝑋))
39 yon12.g . . . 4 (𝜑𝐺 ∈ (𝑍𝐻𝑋))
4029, 3oppchom 17639 . . . 4 (𝑋(Hom ‘(oppCat‘𝐶))𝑍) = (𝑍𝐻𝑋)
4139, 40eleqtrrdi 2839 . . 3 (𝜑𝐺 ∈ (𝑋(Hom ‘(oppCat‘𝐶))𝑍))
424, 14, 21, 25, 22, 24, 22, 27, 35, 38, 31, 41hof2 18181 . 2 (𝜑 → ((((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑍⟩(2nd ‘(HomF‘(oppCat‘𝐶)))⟨𝑋, 𝑊⟩)𝐹)‘𝐺) = ((𝐹(⟨𝑋, 𝑍⟩(comp‘(oppCat‘𝐶))𝑊)𝐺)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)))
43 yon12.x . . . . 5 · = (comp‘𝐶)
4412, 43, 3, 22, 24, 27oppcco 17641 . . . 4 (𝜑 → (𝐹(⟨𝑋, 𝑍⟩(comp‘(oppCat‘𝐶))𝑊)𝐺) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))
4544oveq1d 7368 . . 3 (𝜑 → ((𝐹(⟨𝑋, 𝑍⟩(comp‘(oppCat‘𝐶))𝑊)𝐺)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)) = ((𝐺(⟨𝑊, 𝑍· 𝑋)𝐹)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)))
4612, 43, 3, 22, 22, 27oppcco 17641 . . 3 (𝜑 → ((𝐺(⟨𝑊, 𝑍· 𝑋)𝐹)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)) = (((Id‘𝐶)‘𝑋)(⟨𝑊, 𝑋· 𝑋)(𝐺(⟨𝑊, 𝑍· 𝑋)𝐹)))
4712, 29, 43, 2, 27, 24, 22, 28, 39catcocl 17609 . . . 4 (𝜑 → (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹) ∈ (𝑊𝐻𝑋))
4812, 29, 26, 2, 27, 43, 22, 47catlid 17607 . . 3 (𝜑 → (((Id‘𝐶)‘𝑋)(⟨𝑊, 𝑋· 𝑋)(𝐺(⟨𝑊, 𝑍· 𝑋)𝐹)) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))
4945, 46, 483eqtrd 2768 . 2 (𝜑 → ((𝐹(⟨𝑋, 𝑍⟩(comp‘(oppCat‘𝐶))𝑊)𝐺)(⟨𝑋, 𝑋⟩(comp‘(oppCat‘𝐶))𝑊)((Id‘𝐶)‘𝑋)) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))
5034, 42, 493eqtrd 2768 1 (𝜑 → (((𝑍(2nd ‘((1st𝑌)‘𝑋))𝑊)‘𝐹)‘𝐺) = (𝐺(⟨𝑊, 𝑍· 𝑋)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585  ran crn 5624  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  Basecbs 17138  Hom chom 17190  compcco 17191  Catccat 17588  Idccid 17589  Homf chomf 17590  oppCatcoppc 17635  SetCatcsetc 18000   curryF ccurf 18134  HomFchof 18172  Yoncyon 18173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-hom 17203  df-cco 17204  df-cat 17592  df-cid 17593  df-homf 17594  df-comf 17595  df-oppc 17636  df-func 17783  df-setc 18001  df-xpc 18096  df-curf 18138  df-hof 18174  df-yon 18175
This theorem is referenced by:  yonedalem4c  18201  yonedalem3b  18203  yonedainv  18205  yonffthlem  18206
  Copyright terms: Public domain W3C validator