![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhpropd | Structured version Visualization version GIF version |
Description: The ℤ ring homomorphism depends only on the ring attributes of a structure. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
zrhpropd.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
zrhpropd.2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
zrhpropd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
zrhpropd.4 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) |
Ref | Expression |
---|---|
zrhpropd | ⊢ (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (Base‘ℤring) = (Base‘ℤring)) | |
2 | zrhpropd.1 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
3 | zrhpropd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
4 | eqidd 2732 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘ℤring) ∧ 𝑦 ∈ (Base‘ℤring))) → (𝑥(+g‘ℤring)𝑦) = (𝑥(+g‘ℤring)𝑦)) | |
5 | zrhpropd.3 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
6 | eqidd 2732 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘ℤring) ∧ 𝑦 ∈ (Base‘ℤring))) → (𝑥(.r‘ℤring)𝑦) = (𝑥(.r‘ℤring)𝑦)) | |
7 | zrhpropd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) | |
8 | 1, 2, 1, 3, 4, 5, 6, 7 | rhmpropd 20500 | . . 3 ⊢ (𝜑 → (ℤring RingHom 𝐾) = (ℤring RingHom 𝐿)) |
9 | 8 | unieqd 4922 | . 2 ⊢ (𝜑 → ∪ (ℤring RingHom 𝐾) = ∪ (ℤring RingHom 𝐿)) |
10 | eqid 2731 | . . 3 ⊢ (ℤRHom‘𝐾) = (ℤRHom‘𝐾) | |
11 | 10 | zrhval 21277 | . 2 ⊢ (ℤRHom‘𝐾) = ∪ (ℤring RingHom 𝐾) |
12 | eqid 2731 | . . 3 ⊢ (ℤRHom‘𝐿) = (ℤRHom‘𝐿) | |
13 | 12 | zrhval 21277 | . 2 ⊢ (ℤRHom‘𝐿) = ∪ (ℤring RingHom 𝐿) |
14 | 9, 11, 13 | 3eqtr4g 2796 | 1 ⊢ (𝜑 → (ℤRHom‘𝐾) = (ℤRHom‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∪ cuni 4908 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 .rcmulr 17203 RingHom crh 20361 ℤringczring 21218 ℤRHomczrh 21269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mhm 18706 df-grp 18859 df-ghm 19129 df-mgp 20030 df-ur 20077 df-ring 20130 df-rhm 20364 df-zrh 21273 |
This theorem is referenced by: znzrh 21318 |
Copyright terms: Public domain | W3C validator |