Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmdsOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of zlmds 32210 as of 11-Nov-2024. Distance in a ℤ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
zlmlem2.1 | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmds.1 | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
zlmdsOLD | ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmds.1 | . 2 ⊢ 𝐷 = (dist‘𝐺) | |
2 | zlmlem2.1 | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
3 | eqid 2736 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
4 | 2, 3 | zlmval 20824 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
5 | 4 | fveq2d 6830 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (dist‘𝑊) = (dist‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
6 | dsid 17194 | . . . . 5 ⊢ dist = Slot (dist‘ndx) | |
7 | 5re 12162 | . . . . . . 7 ⊢ 5 ∈ ℝ | |
8 | 1nn 12086 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
9 | 2nn0 12352 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
10 | 5nn0 12355 | . . . . . . . 8 ⊢ 5 ∈ ℕ0 | |
11 | 5lt10 12674 | . . . . . . . 8 ⊢ 5 < ;10 | |
12 | 8, 9, 10, 11 | declti 12577 | . . . . . . 7 ⊢ 5 < ;12 |
13 | 7, 12 | gtneii 11189 | . . . . . 6 ⊢ ;12 ≠ 5 |
14 | dsndx 17193 | . . . . . . 7 ⊢ (dist‘ndx) = ;12 | |
15 | scandx 17122 | . . . . . . 7 ⊢ (Scalar‘ndx) = 5 | |
16 | 14, 15 | neeq12i 3007 | . . . . . 6 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ↔ ;12 ≠ 5) |
17 | 13, 16 | mpbir 230 | . . . . 5 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
18 | 6, 17 | setsnid 17008 | . . . 4 ⊢ (dist‘𝐺) = (dist‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) |
19 | 6re 12165 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
20 | 6nn0 12356 | . . . . . . . 8 ⊢ 6 ∈ ℕ0 | |
21 | 6lt10 12673 | . . . . . . . 8 ⊢ 6 < ;10 | |
22 | 8, 9, 20, 21 | declti 12577 | . . . . . . 7 ⊢ 6 < ;12 |
23 | 19, 22 | gtneii 11189 | . . . . . 6 ⊢ ;12 ≠ 6 |
24 | vscandx 17127 | . . . . . . 7 ⊢ ( ·𝑠 ‘ndx) = 6 | |
25 | 14, 24 | neeq12i 3007 | . . . . . 6 ⊢ ((dist‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ ;12 ≠ 6) |
26 | 23, 25 | mpbir 230 | . . . . 5 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
27 | 6, 26 | setsnid 17008 | . . . 4 ⊢ (dist‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (dist‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
28 | 18, 27 | eqtri 2764 | . . 3 ⊢ (dist‘𝐺) = (dist‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
29 | 5, 28 | eqtr4di 2794 | . 2 ⊢ (𝐺 ∈ 𝑉 → (dist‘𝑊) = (dist‘𝐺)) |
30 | 1, 29 | eqtr4id 2795 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 〈cop 4580 ‘cfv 6480 (class class class)co 7338 1c1 10974 2c2 12130 5c5 12133 6c6 12134 ;cdc 12539 sSet csts 16962 ndxcnx 16992 Scalarcsca 17063 ·𝑠 cvsca 17064 distcds 17069 .gcmg 18797 ℤringczring 20777 ℤModczlm 20809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-dec 12540 df-sets 16963 df-slot 16981 df-ndx 16993 df-sca 17076 df-vsca 17077 df-ds 17082 df-zlm 20813 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |