![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmdsOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of zlmds 33604 as of 11-Nov-2024. Distance in a ℤ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
zlmlem2.1 | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmds.1 | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
zlmdsOLD | ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmds.1 | . 2 ⊢ 𝐷 = (dist‘𝐺) | |
2 | zlmlem2.1 | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
3 | eqid 2728 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
4 | 2, 3 | zlmval 21455 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
5 | 4 | fveq2d 6906 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (dist‘𝑊) = (dist‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩))) |
6 | dsid 17376 | . . . . 5 ⊢ dist = Slot (dist‘ndx) | |
7 | 5re 12339 | . . . . . . 7 ⊢ 5 ∈ ℝ | |
8 | 1nn 12263 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
9 | 2nn0 12529 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
10 | 5nn0 12532 | . . . . . . . 8 ⊢ 5 ∈ ℕ0 | |
11 | 5lt10 12852 | . . . . . . . 8 ⊢ 5 < ;10 | |
12 | 8, 9, 10, 11 | declti 12755 | . . . . . . 7 ⊢ 5 < ;12 |
13 | 7, 12 | gtneii 11366 | . . . . . 6 ⊢ ;12 ≠ 5 |
14 | dsndx 17375 | . . . . . . 7 ⊢ (dist‘ndx) = ;12 | |
15 | scandx 17304 | . . . . . . 7 ⊢ (Scalar‘ndx) = 5 | |
16 | 14, 15 | neeq12i 3004 | . . . . . 6 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ↔ ;12 ≠ 5) |
17 | 13, 16 | mpbir 230 | . . . . 5 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
18 | 6, 17 | setsnid 17187 | . . . 4 ⊢ (dist‘𝐺) = (dist‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) |
19 | 6re 12342 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
20 | 6nn0 12533 | . . . . . . . 8 ⊢ 6 ∈ ℕ0 | |
21 | 6lt10 12851 | . . . . . . . 8 ⊢ 6 < ;10 | |
22 | 8, 9, 20, 21 | declti 12755 | . . . . . . 7 ⊢ 6 < ;12 |
23 | 19, 22 | gtneii 11366 | . . . . . 6 ⊢ ;12 ≠ 6 |
24 | vscandx 17309 | . . . . . . 7 ⊢ ( ·𝑠 ‘ndx) = 6 | |
25 | 14, 24 | neeq12i 3004 | . . . . . 6 ⊢ ((dist‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ ;12 ≠ 6) |
26 | 23, 25 | mpbir 230 | . . . . 5 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
27 | 6, 26 | setsnid 17187 | . . . 4 ⊢ (dist‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) = (dist‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
28 | 18, 27 | eqtri 2756 | . . 3 ⊢ (dist‘𝐺) = (dist‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
29 | 5, 28 | eqtr4di 2786 | . 2 ⊢ (𝐺 ∈ 𝑉 → (dist‘𝑊) = (dist‘𝐺)) |
30 | 1, 29 | eqtr4id 2787 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ⟨cop 4638 ‘cfv 6553 (class class class)co 7426 1c1 11149 2c2 12307 5c5 12310 6c6 12311 ;cdc 12717 sSet csts 17141 ndxcnx 17171 Scalarcsca 17245 ·𝑠 cvsca 17246 distcds 17251 .gcmg 19037 ℤringczring 21386 ℤModczlm 21440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-2 12315 df-3 12316 df-4 12317 df-5 12318 df-6 12319 df-7 12320 df-8 12321 df-9 12322 df-n0 12513 df-z 12599 df-dec 12718 df-sets 17142 df-slot 17160 df-ndx 17172 df-sca 17258 df-vsca 17259 df-ds 17264 df-zlm 21444 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |