![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmdsOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of zlmds 33472 as of 11-Nov-2024. Distance in a ℤ -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
zlmlem2.1 | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmds.1 | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
zlmdsOLD | ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmds.1 | . 2 ⊢ 𝐷 = (dist‘𝐺) | |
2 | zlmlem2.1 | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
3 | eqid 2726 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
4 | 2, 3 | zlmval 21402 | . . . 4 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
5 | 4 | fveq2d 6889 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (dist‘𝑊) = (dist‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩))) |
6 | dsid 17340 | . . . . 5 ⊢ dist = Slot (dist‘ndx) | |
7 | 5re 12303 | . . . . . . 7 ⊢ 5 ∈ ℝ | |
8 | 1nn 12227 | . . . . . . . 8 ⊢ 1 ∈ ℕ | |
9 | 2nn0 12493 | . . . . . . . 8 ⊢ 2 ∈ ℕ0 | |
10 | 5nn0 12496 | . . . . . . . 8 ⊢ 5 ∈ ℕ0 | |
11 | 5lt10 12816 | . . . . . . . 8 ⊢ 5 < ;10 | |
12 | 8, 9, 10, 11 | declti 12719 | . . . . . . 7 ⊢ 5 < ;12 |
13 | 7, 12 | gtneii 11330 | . . . . . 6 ⊢ ;12 ≠ 5 |
14 | dsndx 17339 | . . . . . . 7 ⊢ (dist‘ndx) = ;12 | |
15 | scandx 17268 | . . . . . . 7 ⊢ (Scalar‘ndx) = 5 | |
16 | 14, 15 | neeq12i 3001 | . . . . . 6 ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ↔ ;12 ≠ 5) |
17 | 13, 16 | mpbir 230 | . . . . 5 ⊢ (dist‘ndx) ≠ (Scalar‘ndx) |
18 | 6, 17 | setsnid 17151 | . . . 4 ⊢ (dist‘𝐺) = (dist‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) |
19 | 6re 12306 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
20 | 6nn0 12497 | . . . . . . . 8 ⊢ 6 ∈ ℕ0 | |
21 | 6lt10 12815 | . . . . . . . 8 ⊢ 6 < ;10 | |
22 | 8, 9, 20, 21 | declti 12719 | . . . . . . 7 ⊢ 6 < ;12 |
23 | 19, 22 | gtneii 11330 | . . . . . 6 ⊢ ;12 ≠ 6 |
24 | vscandx 17273 | . . . . . . 7 ⊢ ( ·𝑠 ‘ndx) = 6 | |
25 | 14, 24 | neeq12i 3001 | . . . . . 6 ⊢ ((dist‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ ;12 ≠ 6) |
26 | 23, 25 | mpbir 230 | . . . . 5 ⊢ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) |
27 | 6, 26 | setsnid 17151 | . . . 4 ⊢ (dist‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) = (dist‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
28 | 18, 27 | eqtri 2754 | . . 3 ⊢ (dist‘𝐺) = (dist‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g‘𝐺)⟩)) |
29 | 5, 28 | eqtr4di 2784 | . 2 ⊢ (𝐺 ∈ 𝑉 → (dist‘𝑊) = (dist‘𝐺)) |
30 | 1, 29 | eqtr4id 2785 | 1 ⊢ (𝐺 ∈ 𝑉 → 𝐷 = (dist‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 ⟨cop 4629 ‘cfv 6537 (class class class)co 7405 1c1 11113 2c2 12271 5c5 12274 6c6 12275 ;cdc 12681 sSet csts 17105 ndxcnx 17135 Scalarcsca 17209 ·𝑠 cvsca 17210 distcds 17215 .gcmg 18995 ℤringczring 21333 ℤModczlm 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-sets 17106 df-slot 17124 df-ndx 17136 df-sca 17222 df-vsca 17223 df-ds 17228 df-zlm 21391 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |