![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmvsca | Structured version Visualization version GIF version |
Description: Scalar multiplication operation of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmvsca.2 | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
zlmvsca | ⊢ · = ( ·𝑠 ‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7481 | . . . 4 ⊢ (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V | |
2 | zlmvsca.2 | . . . . 5 ⊢ · = (.g‘𝐺) | |
3 | 2 | fvexi 6934 | . . . 4 ⊢ · ∈ V |
4 | vscaid 17379 | . . . . 5 ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | |
5 | 4 | setsid 17255 | . . . 4 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ · ∈ V) → · = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
6 | 1, 3, 5 | mp2an 691 | . . 3 ⊢ · = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
7 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
8 | 7, 2 | zlmval 21549 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
9 | 8 | fveq2d 6924 | . . 3 ⊢ (𝐺 ∈ V → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
10 | 6, 9 | eqtr4id 2799 | . 2 ⊢ (𝐺 ∈ V → · = ( ·𝑠 ‘𝑊)) |
11 | 4 | str0 17236 | . . 3 ⊢ ∅ = ( ·𝑠 ‘∅) |
12 | fvprc 6912 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (.g‘𝐺) = ∅) | |
13 | 2, 12 | eqtrid 2792 | . . 3 ⊢ (¬ 𝐺 ∈ V → · = ∅) |
14 | fvprc 6912 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (ℤMod‘𝐺) = ∅) | |
15 | 7, 14 | eqtrid 2792 | . . . 4 ⊢ (¬ 𝐺 ∈ V → 𝑊 = ∅) |
16 | 15 | fveq2d 6924 | . . 3 ⊢ (¬ 𝐺 ∈ V → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘∅)) |
17 | 11, 13, 16 | 3eqtr4a 2806 | . 2 ⊢ (¬ 𝐺 ∈ V → · = ( ·𝑠 ‘𝑊)) |
18 | 10, 17 | pm2.61i 182 | 1 ⊢ · = ( ·𝑠 ‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 ‘cfv 6573 (class class class)co 7448 sSet csts 17210 ndxcnx 17240 Scalarcsca 17314 ·𝑠 cvsca 17315 .gcmg 19107 ℤringczring 21480 ℤModczlm 21534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-sets 17211 df-slot 17229 df-ndx 17241 df-vsca 17328 df-zlm 21538 |
This theorem is referenced by: zlmlmod 21560 zlmassa 21946 clmzlmvsca 25165 nmmulg 33914 cnzh 33916 rezh 33917 |
Copyright terms: Public domain | W3C validator |