MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmvsca Structured version   Visualization version   GIF version

Theorem zlmvsca 20639
Description: Scalar multiplication operation of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
zlmbas.w 𝑊 = (ℤMod‘𝐺)
zlmvsca.2 · = (.g𝐺)
Assertion
Ref Expression
zlmvsca · = ( ·𝑠𝑊)

Proof of Theorem zlmvsca
StepHypRef Expression
1 ovex 7288 . . . 4 (𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) ∈ V
2 zlmvsca.2 . . . . 5 · = (.g𝐺)
32fvexi 6770 . . . 4 · ∈ V
4 vscaid 16956 . . . . 5 ·𝑠 = Slot ( ·𝑠 ‘ndx)
54setsid 16837 . . . 4 (((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) ∈ V ∧ · ∈ V) → · = ( ·𝑠 ‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩)))
61, 3, 5mp2an 688 . . 3 · = ( ·𝑠 ‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
7 zlmbas.w . . . . 5 𝑊 = (ℤMod‘𝐺)
87, 2zlmval 20629 . . . 4 (𝐺 ∈ V → 𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
98fveq2d 6760 . . 3 (𝐺 ∈ V → ( ·𝑠𝑊) = ( ·𝑠 ‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩)))
106, 9eqtr4id 2798 . 2 (𝐺 ∈ V → · = ( ·𝑠𝑊))
114str0 16818 . . 3 ∅ = ( ·𝑠 ‘∅)
12 fvprc 6748 . . . 4 𝐺 ∈ V → (.g𝐺) = ∅)
132, 12eqtrid 2790 . . 3 𝐺 ∈ V → · = ∅)
14 fvprc 6748 . . . . 5 𝐺 ∈ V → (ℤMod‘𝐺) = ∅)
157, 14eqtrid 2790 . . . 4 𝐺 ∈ V → 𝑊 = ∅)
1615fveq2d 6760 . . 3 𝐺 ∈ V → ( ·𝑠𝑊) = ( ·𝑠 ‘∅))
1711, 13, 163eqtr4a 2805 . 2 𝐺 ∈ V → · = ( ·𝑠𝑊))
1810, 17pm2.61i 182 1 · = ( ·𝑠𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  cop 4564  cfv 6418  (class class class)co 7255   sSet csts 16792  ndxcnx 16822  Scalarcsca 16891   ·𝑠 cvsca 16892  .gcmg 18615  ringzring 20582  ℤModczlm 20614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-sets 16793  df-slot 16811  df-ndx 16823  df-vsca 16905  df-zlm 20618
This theorem is referenced by:  zlmlmod  20640  zlmassa  21016  clmzlmvsca  24182  nmmulg  31818  cnzh  31820  rezh  31821
  Copyright terms: Public domain W3C validator