| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zlmvsca | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication operation of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| zlmvsca.2 | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| zlmvsca | ⊢ · = ( ·𝑠 ‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7446 | . . . 4 ⊢ (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V | |
| 2 | zlmvsca.2 | . . . . 5 ⊢ · = (.g‘𝐺) | |
| 3 | 2 | fvexi 6900 | . . . 4 ⊢ · ∈ V |
| 4 | vscaid 17336 | . . . . 5 ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | |
| 5 | 4 | setsid 17226 | . . . 4 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ · ∈ V) → · = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
| 6 | 1, 3, 5 | mp2an 692 | . . 3 ⊢ · = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 7 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 8 | 7, 2 | zlmval 21488 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 9 | 8 | fveq2d 6890 | . . 3 ⊢ (𝐺 ∈ V → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
| 10 | 6, 9 | eqtr4id 2788 | . 2 ⊢ (𝐺 ∈ V → · = ( ·𝑠 ‘𝑊)) |
| 11 | 4 | str0 17208 | . . 3 ⊢ ∅ = ( ·𝑠 ‘∅) |
| 12 | fvprc 6878 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (.g‘𝐺) = ∅) | |
| 13 | 2, 12 | eqtrid 2781 | . . 3 ⊢ (¬ 𝐺 ∈ V → · = ∅) |
| 14 | fvprc 6878 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (ℤMod‘𝐺) = ∅) | |
| 15 | 7, 14 | eqtrid 2781 | . . . 4 ⊢ (¬ 𝐺 ∈ V → 𝑊 = ∅) |
| 16 | 15 | fveq2d 6890 | . . 3 ⊢ (¬ 𝐺 ∈ V → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘∅)) |
| 17 | 11, 13, 16 | 3eqtr4a 2795 | . 2 ⊢ (¬ 𝐺 ∈ V → · = ( ·𝑠 ‘𝑊)) |
| 18 | 10, 17 | pm2.61i 182 | 1 ⊢ · = ( ·𝑠 ‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∅c0 4313 〈cop 4612 ‘cfv 6541 (class class class)co 7413 sSet csts 17182 ndxcnx 17212 Scalarcsca 17276 ·𝑠 cvsca 17277 .gcmg 19054 ℤringczring 21419 ℤModczlm 21473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-1cn 11195 ax-addcl 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-sets 17183 df-slot 17201 df-ndx 17213 df-vsca 17290 df-zlm 21477 |
| This theorem is referenced by: zlmlmod 21495 zlmassa 21877 clmzlmvsca 25082 nmmulg 33926 cnzh 33928 rezh 33929 |
| Copyright terms: Public domain | W3C validator |