MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmvsca Structured version   Visualization version   GIF version

Theorem zlmvsca 20949
Description: Scalar multiplication operation of a -module. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
zlmbas.w 𝑊 = (ℤMod‘𝐺)
zlmvsca.2 · = (.g𝐺)
Assertion
Ref Expression
zlmvsca · = ( ·𝑠𝑊)

Proof of Theorem zlmvsca
StepHypRef Expression
1 ovex 7394 . . . 4 (𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) ∈ V
2 zlmvsca.2 . . . . 5 · = (.g𝐺)
32fvexi 6860 . . . 4 · ∈ V
4 vscaid 17209 . . . . 5 ·𝑠 = Slot ( ·𝑠 ‘ndx)
54setsid 17088 . . . 4 (((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) ∈ V ∧ · ∈ V) → · = ( ·𝑠 ‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩)))
61, 3, 5mp2an 691 . . 3 · = ( ·𝑠 ‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
7 zlmbas.w . . . . 5 𝑊 = (ℤMod‘𝐺)
87, 2zlmval 20939 . . . 4 (𝐺 ∈ V → 𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩))
98fveq2d 6850 . . 3 (𝐺 ∈ V → ( ·𝑠𝑊) = ( ·𝑠 ‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), · ⟩)))
106, 9eqtr4id 2792 . 2 (𝐺 ∈ V → · = ( ·𝑠𝑊))
114str0 17069 . . 3 ∅ = ( ·𝑠 ‘∅)
12 fvprc 6838 . . . 4 𝐺 ∈ V → (.g𝐺) = ∅)
132, 12eqtrid 2785 . . 3 𝐺 ∈ V → · = ∅)
14 fvprc 6838 . . . . 5 𝐺 ∈ V → (ℤMod‘𝐺) = ∅)
157, 14eqtrid 2785 . . . 4 𝐺 ∈ V → 𝑊 = ∅)
1615fveq2d 6850 . . 3 𝐺 ∈ V → ( ·𝑠𝑊) = ( ·𝑠 ‘∅))
1711, 13, 163eqtr4a 2799 . 2 𝐺 ∈ V → · = ( ·𝑠𝑊))
1810, 17pm2.61i 182 1 · = ( ·𝑠𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2107  Vcvv 3447  c0 4286  cop 4596  cfv 6500  (class class class)co 7361   sSet csts 17043  ndxcnx 17073  Scalarcsca 17144   ·𝑠 cvsca 17145  .gcmg 18880  ringczring 20892  ℤModczlm 20924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-1cn 11117  ax-addcl 11119
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-5 12227  df-6 12228  df-sets 17044  df-slot 17062  df-ndx 17074  df-vsca 17158  df-zlm 20928
This theorem is referenced by:  zlmlmod  20950  zlmassa  21328  clmzlmvsca  24499  nmmulg  32613  cnzh  32615  rezh  32616
  Copyright terms: Public domain W3C validator