| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zlmvsca | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication operation of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| zlmvsca.2 | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| zlmvsca | ⊢ · = ( ·𝑠 ‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7423 | . . . 4 ⊢ (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V | |
| 2 | zlmvsca.2 | . . . . 5 ⊢ · = (.g‘𝐺) | |
| 3 | 2 | fvexi 6875 | . . . 4 ⊢ · ∈ V |
| 4 | vscaid 17290 | . . . . 5 ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | |
| 5 | 4 | setsid 17184 | . . . 4 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ · ∈ V) → · = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
| 6 | 1, 3, 5 | mp2an 692 | . . 3 ⊢ · = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 7 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 8 | 7, 2 | zlmval 21432 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 9 | 8 | fveq2d 6865 | . . 3 ⊢ (𝐺 ∈ V → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
| 10 | 6, 9 | eqtr4id 2784 | . 2 ⊢ (𝐺 ∈ V → · = ( ·𝑠 ‘𝑊)) |
| 11 | 4 | str0 17166 | . . 3 ⊢ ∅ = ( ·𝑠 ‘∅) |
| 12 | fvprc 6853 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (.g‘𝐺) = ∅) | |
| 13 | 2, 12 | eqtrid 2777 | . . 3 ⊢ (¬ 𝐺 ∈ V → · = ∅) |
| 14 | fvprc 6853 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (ℤMod‘𝐺) = ∅) | |
| 15 | 7, 14 | eqtrid 2777 | . . . 4 ⊢ (¬ 𝐺 ∈ V → 𝑊 = ∅) |
| 16 | 15 | fveq2d 6865 | . . 3 ⊢ (¬ 𝐺 ∈ V → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘∅)) |
| 17 | 11, 13, 16 | 3eqtr4a 2791 | . 2 ⊢ (¬ 𝐺 ∈ V → · = ( ·𝑠 ‘𝑊)) |
| 18 | 10, 17 | pm2.61i 182 | 1 ⊢ · = ( ·𝑠 ‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 〈cop 4598 ‘cfv 6514 (class class class)co 7390 sSet csts 17140 ndxcnx 17170 Scalarcsca 17230 ·𝑠 cvsca 17231 .gcmg 19006 ℤringczring 21363 ℤModczlm 21417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-sets 17141 df-slot 17159 df-ndx 17171 df-vsca 17244 df-zlm 21421 |
| This theorem is referenced by: zlmlmod 21439 zlmassa 21819 clmzlmvsca 25020 nmmulg 33963 cnzh 33965 rezh 33966 |
| Copyright terms: Public domain | W3C validator |