![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmvsca | Structured version Visualization version GIF version |
Description: Scalar multiplication operation of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
zlmvsca.2 | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
zlmvsca | ⊢ · = ( ·𝑠 ‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7464 | . . . 4 ⊢ (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V | |
2 | zlmvsca.2 | . . . . 5 ⊢ · = (.g‘𝐺) | |
3 | 2 | fvexi 6921 | . . . 4 ⊢ · ∈ V |
4 | vscaid 17366 | . . . . 5 ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | |
5 | 4 | setsid 17242 | . . . 4 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ · ∈ V) → · = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
6 | 1, 3, 5 | mp2an 692 | . . 3 ⊢ · = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
7 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
8 | 7, 2 | zlmval 21544 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
9 | 8 | fveq2d 6911 | . . 3 ⊢ (𝐺 ∈ V → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
10 | 6, 9 | eqtr4id 2794 | . 2 ⊢ (𝐺 ∈ V → · = ( ·𝑠 ‘𝑊)) |
11 | 4 | str0 17223 | . . 3 ⊢ ∅ = ( ·𝑠 ‘∅) |
12 | fvprc 6899 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (.g‘𝐺) = ∅) | |
13 | 2, 12 | eqtrid 2787 | . . 3 ⊢ (¬ 𝐺 ∈ V → · = ∅) |
14 | fvprc 6899 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (ℤMod‘𝐺) = ∅) | |
15 | 7, 14 | eqtrid 2787 | . . . 4 ⊢ (¬ 𝐺 ∈ V → 𝑊 = ∅) |
16 | 15 | fveq2d 6911 | . . 3 ⊢ (¬ 𝐺 ∈ V → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘∅)) |
17 | 11, 13, 16 | 3eqtr4a 2801 | . 2 ⊢ (¬ 𝐺 ∈ V → · = ( ·𝑠 ‘𝑊)) |
18 | 10, 17 | pm2.61i 182 | 1 ⊢ · = ( ·𝑠 ‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 〈cop 4637 ‘cfv 6563 (class class class)co 7431 sSet csts 17197 ndxcnx 17227 Scalarcsca 17301 ·𝑠 cvsca 17302 .gcmg 19098 ℤringczring 21475 ℤModczlm 21529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-sets 17198 df-slot 17216 df-ndx 17228 df-vsca 17315 df-zlm 21533 |
This theorem is referenced by: zlmlmod 21555 zlmassa 21941 clmzlmvsca 25160 nmmulg 33929 cnzh 33931 rezh 33932 |
Copyright terms: Public domain | W3C validator |