| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zlmvsca | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication operation of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| zlmvsca.2 | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| zlmvsca | ⊢ · = ( ·𝑠 ‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7374 | . . . 4 ⊢ (𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V | |
| 2 | zlmvsca.2 | . . . . 5 ⊢ · = (.g‘𝐺) | |
| 3 | 2 | fvexi 6831 | . . . 4 ⊢ · ∈ V |
| 4 | vscaid 17216 | . . . . 5 ⊢ ·𝑠 = Slot ( ·𝑠 ‘ndx) | |
| 5 | 4 | setsid 17110 | . . . 4 ⊢ (((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) ∈ V ∧ · ∈ V) → · = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
| 6 | 1, 3, 5 | mp2an 692 | . . 3 ⊢ · = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 7 | zlmbas.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 8 | 7, 2 | zlmval 21445 | . . . 4 ⊢ (𝐺 ∈ V → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉)) |
| 9 | 8 | fveq2d 6821 | . . 3 ⊢ (𝐺 ∈ V → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), · 〉))) |
| 10 | 6, 9 | eqtr4id 2784 | . 2 ⊢ (𝐺 ∈ V → · = ( ·𝑠 ‘𝑊)) |
| 11 | 4 | str0 17092 | . . 3 ⊢ ∅ = ( ·𝑠 ‘∅) |
| 12 | fvprc 6809 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (.g‘𝐺) = ∅) | |
| 13 | 2, 12 | eqtrid 2777 | . . 3 ⊢ (¬ 𝐺 ∈ V → · = ∅) |
| 14 | fvprc 6809 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → (ℤMod‘𝐺) = ∅) | |
| 15 | 7, 14 | eqtrid 2777 | . . . 4 ⊢ (¬ 𝐺 ∈ V → 𝑊 = ∅) |
| 16 | 15 | fveq2d 6821 | . . 3 ⊢ (¬ 𝐺 ∈ V → ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘∅)) |
| 17 | 11, 13, 16 | 3eqtr4a 2791 | . 2 ⊢ (¬ 𝐺 ∈ V → · = ( ·𝑠 ‘𝑊)) |
| 18 | 10, 17 | pm2.61i 182 | 1 ⊢ · = ( ·𝑠 ‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ∅c0 4281 〈cop 4580 ‘cfv 6477 (class class class)co 7341 sSet csts 17066 ndxcnx 17096 Scalarcsca 17156 ·𝑠 cvsca 17157 .gcmg 18972 ℤringczring 21376 ℤModczlm 21430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-1cn 11056 ax-addcl 11058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-sets 17067 df-slot 17085 df-ndx 17097 df-vsca 17170 df-zlm 21434 |
| This theorem is referenced by: zlmlmod 21452 zlmassa 21833 clmzlmvsca 25033 nmmulg 33969 cnzh 33971 rezh 33972 |
| Copyright terms: Public domain | W3C validator |