Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmtsetOLD Structured version   Visualization version   GIF version

Theorem zlmtsetOLD 33409
Description: Obsolete proof of zlmtset 33408 as of 11-Nov-2024. Topology in a -module (if present). (Contributed by Thierry Arnoux, 8-Nov-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
zlmlem2.1 𝑊 = (ℤMod‘𝐺)
zlmtset.1 𝐽 = (TopSet‘𝐺)
Assertion
Ref Expression
zlmtsetOLD (𝐺𝑉𝐽 = (TopSet‘𝑊))

Proof of Theorem zlmtsetOLD
StepHypRef Expression
1 zlmtset.1 . . 3 𝐽 = (TopSet‘𝐺)
2 tsetid 17305 . . . 4 TopSet = Slot (TopSet‘ndx)
3 5re 12306 . . . . . 6 5 ∈ ℝ
4 5lt9 12421 . . . . . 6 5 < 9
53, 4gtneii 11333 . . . . 5 9 ≠ 5
6 tsetndx 17304 . . . . . 6 (TopSet‘ndx) = 9
7 scandx 17266 . . . . . 6 (Scalar‘ndx) = 5
86, 7neeq12i 3006 . . . . 5 ((TopSet‘ndx) ≠ (Scalar‘ndx) ↔ 9 ≠ 5)
95, 8mpbir 230 . . . 4 (TopSet‘ndx) ≠ (Scalar‘ndx)
102, 9setsnid 17149 . . 3 (TopSet‘𝐺) = (TopSet‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩))
11 6re 12309 . . . . . 6 6 ∈ ℝ
12 6lt9 12420 . . . . . 6 6 < 9
1311, 12gtneii 11333 . . . . 5 9 ≠ 6
14 vscandx 17271 . . . . . 6 ( ·𝑠 ‘ndx) = 6
156, 14neeq12i 3006 . . . . 5 ((TopSet‘ndx) ≠ ( ·𝑠 ‘ndx) ↔ 9 ≠ 6)
1613, 15mpbir 230 . . . 4 (TopSet‘ndx) ≠ ( ·𝑠 ‘ndx)
172, 16setsnid 17149 . . 3 (TopSet‘(𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩)) = (TopSet‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
181, 10, 173eqtri 2763 . 2 𝐽 = (TopSet‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
19 zlmlem2.1 . . . 4 𝑊 = (ℤMod‘𝐺)
20 eqid 2731 . . . 4 (.g𝐺) = (.g𝐺)
2119, 20zlmval 21375 . . 3 (𝐺𝑉𝑊 = ((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩))
2221fveq2d 6895 . 2 (𝐺𝑉 → (TopSet‘𝑊) = (TopSet‘((𝐺 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝐺)⟩)))
2318, 22eqtr4id 2790 1 (𝐺𝑉𝐽 = (TopSet‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  wne 2939  cop 4634  cfv 6543  (class class class)co 7412  5c5 12277  6c6 12278  9c9 12281   sSet csts 17103  ndxcnx 17133  Scalarcsca 17207   ·𝑠 cvsca 17208  TopSetcts 17210  .gcmg 18993  ringczring 21306  ℤModczlm 21360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-sets 17104  df-slot 17122  df-ndx 17134  df-sca 17220  df-vsca 17221  df-tset 17223  df-zlm 21364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator