![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zlmsca | Structured version Visualization version GIF version |
Description: Scalar ring of a ℤ-module. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 12-Jun-2019.) (Proof shortened by AV, 2-Nov-2024.) |
Ref | Expression |
---|---|
zlmbas.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
Ref | Expression |
---|---|
zlmsca | ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaid 17370 | . . 3 ⊢ Scalar = Slot (Scalar‘ndx) | |
2 | vscandxnscandx 17379 | . . . 4 ⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) | |
3 | 2 | necomi 2995 | . . 3 ⊢ (Scalar‘ndx) ≠ ( ·𝑠 ‘ndx) |
4 | 1, 3 | setsnid 17252 | . 2 ⊢ (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉)) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
5 | zringring 21487 | . . 3 ⊢ ℤring ∈ Ring | |
6 | 1 | setsid 17251 | . . 3 ⊢ ((𝐺 ∈ 𝑉 ∧ ℤring ∈ Ring) → ℤring = (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
7 | 5, 6 | mpan2 691 | . 2 ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘(𝐺 sSet 〈(Scalar‘ndx), ℤring〉))) |
8 | zlmbas.w | . . . 4 ⊢ 𝑊 = (ℤMod‘𝐺) | |
9 | eqid 2737 | . . . 4 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
10 | 8, 9 | zlmval 21553 | . . 3 ⊢ (𝐺 ∈ 𝑉 → 𝑊 = ((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉)) |
11 | 10 | fveq2d 6918 | . 2 ⊢ (𝐺 ∈ 𝑉 → (Scalar‘𝑊) = (Scalar‘((𝐺 sSet 〈(Scalar‘ndx), ℤring〉) sSet 〈( ·𝑠 ‘ndx), (.g‘𝐺)〉))) |
12 | 4, 7, 11 | 3eqtr4a 2803 | 1 ⊢ (𝐺 ∈ 𝑉 → ℤring = (Scalar‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4640 ‘cfv 6569 (class class class)co 7438 sSet csts 17206 ndxcnx 17236 Scalarcsca 17310 ·𝑠 cvsca 17311 .gcmg 19107 Ringcrg 20260 ℤringczring 21484 ℤModczlm 21538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-addf 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-starv 17322 df-sca 17323 df-vsca 17324 df-tset 17326 df-ple 17327 df-ds 17329 df-unif 17330 df-0g 17497 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-grp 18976 df-minusg 18977 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-subrng 20572 df-subrg 20596 df-cnfld 21392 df-zring 21485 df-zlm 21542 |
This theorem is referenced by: zlmlmod 21564 zlmassa 21950 zlmclm 25170 nmmulg 33961 cnzh 33963 rezh 33964 |
Copyright terms: Public domain | W3C validator |