Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneallem2 Structured version   Visualization version   GIF version

Theorem lighneallem2 43820
Description: Lemma 2 for lighneal 43825. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
lighneallem2 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)

Proof of Theorem lighneallem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 evennn2n 15700 . . . 4 (𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁))
213ad2ant3 1131 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁))
3 oveq2 7164 . . . . . . . . 9 (𝑁 = (2 · 𝑘) → (2↑𝑁) = (2↑(2 · 𝑘)))
43eqcoms 2829 . . . . . . . 8 ((2 · 𝑘) = 𝑁 → (2↑𝑁) = (2↑(2 · 𝑘)))
5 2cnd 11716 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
6 nncn 11646 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
75, 6mulcomd 10662 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) = (𝑘 · 2))
87oveq2d 7172 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑(2 · 𝑘)) = (2↑(𝑘 · 2)))
9 2nn0 11915 . . . . . . . . . . . 12 2 ∈ ℕ0
109a1i 11 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 2 ∈ ℕ0)
11 nnnn0 11905 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
125, 10, 11expmuld 13514 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑(𝑘 · 2)) = ((2↑𝑘)↑2))
138, 12eqtrd 2856 . . . . . . . . 9 (𝑘 ∈ ℕ → (2↑(2 · 𝑘)) = ((2↑𝑘)↑2))
1413adantl 484 . . . . . . . 8 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (2↑(2 · 𝑘)) = ((2↑𝑘)↑2))
154, 14sylan9eqr 2878 . . . . . . 7 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (2↑𝑁) = ((2↑𝑘)↑2))
1615oveq1d 7171 . . . . . 6 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → ((2↑𝑁) − 1) = (((2↑𝑘)↑2) − 1))
1716eqeq1d 2823 . . . . 5 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ (((2↑𝑘)↑2) − 1) = (𝑃𝑀)))
18 elnn1uz2 12326 . . . . . . . 8 (𝑘 ∈ ℕ ↔ (𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)))
19 oveq2 7164 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (2↑𝑘) = (2↑1))
20 2cn 11713 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
21 exp1 13436 . . . . . . . . . . . . . . . . . 18 (2 ∈ ℂ → (2↑1) = 2)
2220, 21ax-mp 5 . . . . . . . . . . . . . . . . 17 (2↑1) = 2
2319, 22syl6eq 2872 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → (2↑𝑘) = 2)
2423oveq1d 7171 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((2↑𝑘)↑2) = (2↑2))
2524oveq1d 7171 . . . . . . . . . . . . . 14 (𝑘 = 1 → (((2↑𝑘)↑2) − 1) = ((2↑2) − 1))
26 sq2 13561 . . . . . . . . . . . . . . . 16 (2↑2) = 4
2726oveq1i 7166 . . . . . . . . . . . . . . 15 ((2↑2) − 1) = (4 − 1)
28 4m1e3 11767 . . . . . . . . . . . . . . 15 (4 − 1) = 3
2927, 28eqtri 2844 . . . . . . . . . . . . . 14 ((2↑2) − 1) = 3
3025, 29syl6eq 2872 . . . . . . . . . . . . 13 (𝑘 = 1 → (((2↑𝑘)↑2) − 1) = 3)
3130eqeq1d 2823 . . . . . . . . . . . 12 (𝑘 = 1 → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ 3 = (𝑃𝑀)))
3231adantr 483 . . . . . . . . . . 11 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ 3 = (𝑃𝑀)))
33 eqcom 2828 . . . . . . . . . . . . . 14 (3 = (𝑃𝑀) ↔ (𝑃𝑀) = 3)
34 eldifi 4103 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
35 prmnn 16018 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
36 nnre 11645 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
3734, 35, 363syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ)
38373ad2ant1 1129 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℝ)
39 nnnn0 11905 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
40393ad2ant2 1130 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ0)
4138, 40reexpcld 13528 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃𝑀) ∈ ℝ)
4241adantr 483 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) ∈ ℝ)
43 simpr 487 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) = 3)
4442, 43eqled 10743 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑃𝑀) = 3) → (𝑃𝑀) ≤ 3)
4544ex 415 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) = 3 → (𝑃𝑀) ≤ 3))
4633, 45syl5bi 244 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (3 = (𝑃𝑀) → (𝑃𝑀) ≤ 3))
4735nnred 11653 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
48 prmgt1 16041 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℙ → 1 < 𝑃)
4947, 48jca 514 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
5034, 49syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
51503ad2ant1 1129 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
52 nnz 12005 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
53523ad2ant2 1130 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
54 3rp 12396 . . . . . . . . . . . . . . . 16 3 ∈ ℝ+
5554a1i 11 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 3 ∈ ℝ+)
56 efexple 25857 . . . . . . . . . . . . . . 15 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ 𝑀 ∈ ℤ ∧ 3 ∈ ℝ+) → ((𝑃𝑀) ≤ 3 ↔ 𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃)))))
5751, 53, 55, 56syl3anc 1367 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) ≤ 3 ↔ 𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃)))))
58 oddprmge3 16044 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘3))
59 eluzle 12257 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℤ‘3) → 3 ≤ 𝑃)
6058, 59syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 3 ≤ 𝑃)
6154a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 3 ∈ ℝ+)
62 nnrp 12401 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
6334, 35, 623syl 18 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℝ+)
6461, 63logled 25210 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → (3 ≤ 𝑃 ↔ (log‘3) ≤ (log‘𝑃)))
6560, 64mpbid 234 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → (log‘3) ≤ (log‘𝑃))
66653ad2ant1 1129 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (log‘3) ≤ (log‘𝑃))
67 relogcl 25159 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
6854, 67ax-mp 5 . . . . . . . . . . . . . . . . 17 (log‘3) ∈ ℝ
69 rplogcl 25187 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (log‘𝑃) ∈ ℝ+)
7034, 49, 693syl 18 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ∈ ℝ+)
71703ad2ant1 1129 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (log‘𝑃) ∈ ℝ+)
72 divle1le 12460 . . . . . . . . . . . . . . . . 17 (((log‘3) ∈ ℝ ∧ (log‘𝑃) ∈ ℝ+) → (((log‘3) / (log‘𝑃)) ≤ 1 ↔ (log‘3) ≤ (log‘𝑃)))
7368, 71, 72sylancr 589 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((log‘3) / (log‘𝑃)) ≤ 1 ↔ (log‘3) ≤ (log‘𝑃)))
7466, 73mpbird 259 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((log‘3) / (log‘𝑃)) ≤ 1)
75 fldivle 13202 . . . . . . . . . . . . . . . . 17 (((log‘3) ∈ ℝ ∧ (log‘𝑃) ∈ ℝ+) → (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃)))
7668, 71, 75sylancr 589 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃)))
77 nnre 11645 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
78773ad2ant2 1130 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℝ)
7968a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (log‘3) ∈ ℝ)
8062relogcld 25206 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℕ → (log‘𝑃) ∈ ℝ)
8134, 35, 803syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ∈ ℝ)
8235nnrpd 12430 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ+)
83 1red 10642 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℙ → 1 ∈ ℝ)
8483, 48gtned 10775 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑃 ∈ ℙ → 𝑃 ≠ 1)
8582, 84jca 514 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ+𝑃 ≠ 1))
86 logne0 25163 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℝ+𝑃 ≠ 1) → (log‘𝑃) ≠ 0)
8734, 85, 863syl 18 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ (ℙ ∖ {2}) → (log‘𝑃) ≠ 0)
8879, 81, 87redivcld 11468 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ (ℙ ∖ {2}) → ((log‘3) / (log‘𝑃)) ∈ ℝ)
8988flcld 13169 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ (ℙ ∖ {2}) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℤ)
9089zred 12088 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ (ℙ ∖ {2}) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ)
91903ad2ant1 1129 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ)
92883ad2ant1 1129 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((log‘3) / (log‘𝑃)) ∈ ℝ)
93 letr 10734 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ (⌊‘((log‘3) / (log‘𝑃))) ∈ ℝ ∧ ((log‘3) / (log‘𝑃)) ∈ ℝ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → 𝑀 ≤ ((log‘3) / (log‘𝑃))))
9478, 91, 92, 93syl3anc 1367 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → 𝑀 ≤ ((log‘3) / (log‘𝑃))))
95 1red 10642 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ)
96 letr 10734 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℝ ∧ ((log‘3) / (log‘𝑃)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 ≤ 1))
9778, 92, 95, 96syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 ≤ 1))
98 nnge1 11666 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
99 eqcom 2828 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 = 1 ↔ 1 = 𝑀)
100 1red 10642 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ → 1 ∈ ℝ)
101100, 77letri3d 10782 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ → (1 = 𝑀 ↔ (1 ≤ 𝑀𝑀 ≤ 1)))
10299, 101syl5rbb 286 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ → ((1 ≤ 𝑀𝑀 ≤ 1) ↔ 𝑀 = 1))
103102biimpd 231 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ → ((1 ≤ 𝑀𝑀 ≤ 1) → 𝑀 = 1))
10498, 103mpand 693 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ → (𝑀 ≤ 1 → 𝑀 = 1))
1051043ad2ant2 1130 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ 1 → 𝑀 = 1))
10697, 105syld 47 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ ((log‘3) / (log‘𝑃)) ∧ ((log‘3) / (log‘𝑃)) ≤ 1) → 𝑀 = 1))
107106expd 418 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ ((log‘3) / (log‘𝑃)) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
10894, 107syld 47 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) ∧ (⌊‘((log‘3) / (log‘𝑃))) ≤ ((log‘3) / (log‘𝑃))) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
10976, 108mpan2d 692 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) → (((log‘3) / (log‘𝑃)) ≤ 1 → 𝑀 = 1)))
11074, 109mpid 44 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ≤ (⌊‘((log‘3) / (log‘𝑃))) → 𝑀 = 1))
11157, 110sylbid 242 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑃𝑀) ≤ 3 → 𝑀 = 1))
11246, 111syld 47 . . . . . . . . . . . 12 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (3 = (𝑃𝑀) → 𝑀 = 1))
113112adantl 484 . . . . . . . . . . 11 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (3 = (𝑃𝑀) → 𝑀 = 1))
11432, 113sylbid 242 . . . . . . . . . 10 ((𝑘 = 1 ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
115114ex 415 . . . . . . . . 9 (𝑘 = 1 → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
116 sq1 13559 . . . . . . . . . . . . . 14 (1↑2) = 1
117116eqcomi 2830 . . . . . . . . . . . . 13 1 = (1↑2)
118117oveq2i 7167 . . . . . . . . . . . 12 (((2↑𝑘)↑2) − 1) = (((2↑𝑘)↑2) − (1↑2))
119118eqeq1i 2826 . . . . . . . . . . 11 ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) ↔ (((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀))
120 eqcom 2828 . . . . . . . . . . . 12 ((((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀) ↔ (𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)))
1219a1i 11 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → 2 ∈ ℕ0)
122 eluzge2nn0 12288 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℕ0)
123121, 122nn0expcld 13608 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘2) → (2↑𝑘) ∈ ℕ0)
124123adantr 483 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (2↑𝑘) ∈ ℕ0)
125 1nn0 11914 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
126125a1i 11 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 1 ∈ ℕ0)
127 1p1e2 11763 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
12822eqcomi 2830 . . . . . . . . . . . . . . . . 17 2 = (2↑1)
129127, 128eqtri 2844 . . . . . . . . . . . . . . . 16 (1 + 1) = (2↑1)
130 eluz2gt1 12321 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → 1 < 𝑘)
131 2re 11712 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
132131a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 2 ∈ ℝ)
133 1zzd 12014 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 1 ∈ ℤ)
134 eluzelz 12254 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 𝑘 ∈ ℤ)
135 1lt2 11809 . . . . . . . . . . . . . . . . . . 19 1 < 2
136135a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (ℤ‘2) → 1 < 2)
137132, 133, 134, 136ltexp2d 13615 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (ℤ‘2) → (1 < 𝑘 ↔ (2↑1) < (2↑𝑘)))
138130, 137mpbid 234 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℤ‘2) → (2↑1) < (2↑𝑘))
139129, 138eqbrtrid 5101 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ‘2) → (1 + 1) < (2↑𝑘))
140139adantr 483 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (1 + 1) < (2↑𝑘))
14134, 39anim12i 614 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
1421413adant3 1128 . . . . . . . . . . . . . . 15 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
143142adantl 484 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0))
144 difsqpwdvds 16223 . . . . . . . . . . . . . 14 ((((2↑𝑘) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (1 + 1) < (2↑𝑘)) ∧ (𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ0)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑃 ∥ (2 · 1)))
145124, 126, 140, 143, 144syl31anc 1369 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑃 ∥ (2 · 1)))
146 2t1e2 11801 . . . . . . . . . . . . . . . . . 18 (2 · 1) = 2
147146breq2i 5074 . . . . . . . . . . . . . . . . 17 (𝑃 ∥ (2 · 1) ↔ 𝑃 ∥ 2)
148 prmuz2 16040 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
14934, 148syl 17 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ‘2))
150 2prm 16036 . . . . . . . . . . . . . . . . . 18 2 ∈ ℙ
151 dvdsprm 16047 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ (ℤ‘2) ∧ 2 ∈ ℙ) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
152149, 150, 151sylancl 588 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ 2 ↔ 𝑃 = 2))
153147, 152syl5bb 285 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 · 1) ↔ 𝑃 = 2))
154 eldifsn 4719 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
155 eqneqall 3027 . . . . . . . . . . . . . . . . . 18 (𝑃 = 2 → (𝑃 ≠ 2 → 𝑀 = 1))
156155com12 32 . . . . . . . . . . . . . . . . 17 (𝑃 ≠ 2 → (𝑃 = 2 → 𝑀 = 1))
157154, 156simplbiim 507 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 = 2 → 𝑀 = 1))
158153, 157sylbid 242 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
1591583ad2ant1 1129 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
160159adantl 484 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑃 ∥ (2 · 1) → 𝑀 = 1))
161145, 160syld 47 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑃𝑀) = (((2↑𝑘)↑2) − (1↑2)) → 𝑀 = 1))
162120, 161syl5bi 244 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − (1↑2)) = (𝑃𝑀) → 𝑀 = 1))
163119, 162syl5bi 244 . . . . . . . . . 10 ((𝑘 ∈ (ℤ‘2) ∧ (𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
164163ex 415 . . . . . . . . 9 (𝑘 ∈ (ℤ‘2) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
165115, 164jaoi 853 . . . . . . . 8 ((𝑘 = 1 ∨ 𝑘 ∈ (ℤ‘2)) → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
16618, 165sylbi 219 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1)))
167166impcom 410 . . . . . 6 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
168167adantr 483 . . . . 5 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → ((((2↑𝑘)↑2) − 1) = (𝑃𝑀) → 𝑀 = 1))
16917, 168sylbid 242 . . . 4 ((((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑘 ∈ ℕ) ∧ (2 · 𝑘) = 𝑁) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))
170169rexlimdva2 3287 . . 3 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (∃𝑘 ∈ ℕ (2 · 𝑘) = 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1712, 170sylbid 242 . 2 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
1721713imp 1107 1 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wrex 3139  cdif 3933  {csn 4567   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  4c4 11695  0cn0 11898  cz 11982  cuz 12244  +crp 12390  cfl 13161  cexp 13430  cdvds 15607  cprime 16015  logclog 25138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-dvds 15608  df-gcd 15844  df-prm 16016  df-pc 16174  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140
This theorem is referenced by:  lighneal  43825
  Copyright terms: Public domain W3C validator