Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mblfinlem3 Structured version   Visualization version   GIF version

Theorem mblfinlem3 33115
Description: The difference between two sets measurable by the criterion in ismblfin 33117 is itself measurable by the same. Corollary 0.3 of [Viaclovsky7] p. 3. (Contributed by Brendan Leahy, 25-Mar-2018.) (Revised by Brendan Leahy, 13-Jul-2018.)
Assertion
Ref Expression
mblfinlem3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ))) → sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) = (vol*‘(𝐴𝐵)))
Distinct variable groups:   𝑦,𝑏,𝐴   𝐵,𝑏,𝑦

Proof of Theorem mblfinlem3
Dummy variables 𝑓 𝑠 𝑢 𝑣 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltso 10070 . . 3 < Or ℝ
21a1i 11 . 2 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ))) → < Or ℝ)
3 difss 3720 . . . 4 (𝐴𝐵) ⊆ 𝐴
4 ovolsscl 23177 . . . 4 (((𝐴𝐵) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
53, 4mp3an1 1408 . . 3 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
653ad2ant1 1080 . 2 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ))) → (vol*‘(𝐴𝐵)) ∈ ℝ)
7 vex 3192 . . . . . 6 𝑢 ∈ V
8 eqeq1 2625 . . . . . . . 8 (𝑦 = 𝑢 → (𝑦 = (vol‘𝑏) ↔ 𝑢 = (vol‘𝑏)))
98anbi2d 739 . . . . . . 7 (𝑦 = 𝑢 → ((𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏)) ↔ (𝑏 ⊆ (𝐴𝐵) ∧ 𝑢 = (vol‘𝑏))))
109rexbidv 3046 . . . . . 6 (𝑦 = 𝑢 → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑢 = (vol‘𝑏))))
117, 10elab 3337 . . . . 5 (𝑢 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))} ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑢 = (vol‘𝑏)))
12 simprl 793 . . . . . . . . 9 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ (𝐴𝐵) ∧ 𝑢 = (vol‘𝑏))) → 𝑏 ⊆ (𝐴𝐵))
13 ssdifss 3724 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝐴𝐵) ⊆ ℝ)
14 ovolss 23176 . . . . . . . . 9 ((𝑏 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ⊆ ℝ) → (vol*‘𝑏) ≤ (vol*‘(𝐴𝐵)))
1512, 13, 14syl2anr 495 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ (𝐴𝐵) ∧ 𝑢 = (vol‘𝑏)))) → (vol*‘𝑏) ≤ (vol*‘(𝐴𝐵)))
16 uniretop 22489 . . . . . . . . . . . . 13 ℝ = (topGen‘ran (,))
1716cldss 20756 . . . . . . . . . . . 12 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → 𝑏 ⊆ ℝ)
18 ovolcl 23169 . . . . . . . . . . . 12 (𝑏 ⊆ ℝ → (vol*‘𝑏) ∈ ℝ*)
1917, 18syl 17 . . . . . . . . . . 11 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (vol*‘𝑏) ∈ ℝ*)
20 ovolcl 23169 . . . . . . . . . . . 12 ((𝐴𝐵) ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
2113, 20syl 17 . . . . . . . . . . 11 (𝐴 ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
22 xrlenlt 10055 . . . . . . . . . . 11 (((vol*‘𝑏) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ∈ ℝ*) → ((vol*‘𝑏) ≤ (vol*‘(𝐴𝐵)) ↔ ¬ (vol*‘(𝐴𝐵)) < (vol*‘𝑏)))
2319, 21, 22syl2anr 495 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑏 ∈ (Clsd‘(topGen‘ran (,)))) → ((vol*‘𝑏) ≤ (vol*‘(𝐴𝐵)) ↔ ¬ (vol*‘(𝐴𝐵)) < (vol*‘𝑏)))
2423adantrr 752 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ (𝐴𝐵) ∧ 𝑢 = (vol‘𝑏)))) → ((vol*‘𝑏) ≤ (vol*‘(𝐴𝐵)) ↔ ¬ (vol*‘(𝐴𝐵)) < (vol*‘𝑏)))
25 id 22 . . . . . . . . . . . . . 14 (𝑢 = (vol‘𝑏) → 𝑢 = (vol‘𝑏))
26 dfss4 3841 . . . . . . . . . . . . . . . . 17 (𝑏 ⊆ ℝ ↔ (ℝ ∖ (ℝ ∖ 𝑏)) = 𝑏)
2717, 26sylib 208 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖ 𝑏)) = 𝑏)
28 rembl 23231 . . . . . . . . . . . . . . . . 17 ℝ ∈ dom vol
2916cldopn 20758 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ (topGen‘ran (,)))
30 opnmbl 23293 . . . . . . . . . . . . . . . . . 18 ((ℝ ∖ 𝑏) ∈ (topGen‘ran (,)) → (ℝ ∖ 𝑏) ∈ dom vol)
3129, 30syl 17 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ 𝑏) ∈ dom vol)
32 difmbl 23234 . . . . . . . . . . . . . . . . 17 ((ℝ ∈ dom vol ∧ (ℝ ∖ 𝑏) ∈ dom vol) → (ℝ ∖ (ℝ ∖ 𝑏)) ∈ dom vol)
3328, 31, 32sylancr 694 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ (ℝ ∖ 𝑏)) ∈ dom vol)
3427, 33eqeltrrd 2699 . . . . . . . . . . . . . . 15 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → 𝑏 ∈ dom vol)
35 mblvol 23221 . . . . . . . . . . . . . . 15 (𝑏 ∈ dom vol → (vol‘𝑏) = (vol*‘𝑏))
3634, 35syl 17 . . . . . . . . . . . . . 14 (𝑏 ∈ (Clsd‘(topGen‘ran (,))) → (vol‘𝑏) = (vol*‘𝑏))
3725, 36sylan9eqr 2677 . . . . . . . . . . . . 13 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑢 = (vol‘𝑏)) → 𝑢 = (vol*‘𝑏))
3837breq2d 4630 . . . . . . . . . . . 12 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑢 = (vol‘𝑏)) → ((vol*‘(𝐴𝐵)) < 𝑢 ↔ (vol*‘(𝐴𝐵)) < (vol*‘𝑏)))
3938notbid 308 . . . . . . . . . . 11 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑢 = (vol‘𝑏)) → (¬ (vol*‘(𝐴𝐵)) < 𝑢 ↔ ¬ (vol*‘(𝐴𝐵)) < (vol*‘𝑏)))
4039adantrl 751 . . . . . . . . . 10 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ (𝐴𝐵) ∧ 𝑢 = (vol‘𝑏))) → (¬ (vol*‘(𝐴𝐵)) < 𝑢 ↔ ¬ (vol*‘(𝐴𝐵)) < (vol*‘𝑏)))
4140adantl 482 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ (𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ (𝐴𝐵) ∧ 𝑢 = (vol‘𝑏)))) → (¬ (vol*‘(𝐴𝐵)) < 𝑢 ↔ ¬ (vol*‘(𝐴𝐵)) < (vol*‘𝑏)))
4224, 41bitr4d 271 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ (𝐴𝐵) ∧ 𝑢 = (vol‘𝑏)))) → ((vol*‘𝑏) ≤ (vol*‘(𝐴𝐵)) ↔ ¬ (vol*‘(𝐴𝐵)) < 𝑢))
4315, 42mpbid 222 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏 ⊆ (𝐴𝐵) ∧ 𝑢 = (vol‘𝑏)))) → ¬ (vol*‘(𝐴𝐵)) < 𝑢)
4443rexlimdvaa 3026 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑢 = (vol‘𝑏)) → ¬ (vol*‘(𝐴𝐵)) < 𝑢))
4544imp 445 . . . . 5 ((𝐴 ⊆ ℝ ∧ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑢 = (vol‘𝑏))) → ¬ (vol*‘(𝐴𝐵)) < 𝑢)
4611, 45sylan2b 492 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑢 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}) → ¬ (vol*‘(𝐴𝐵)) < 𝑢)
4746adantlr 750 . . 3 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝑢 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}) → ¬ (vol*‘(𝐴𝐵)) < 𝑢)
48473ad2antl1 1221 . 2 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ))) ∧ 𝑢 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}) → ¬ (vol*‘(𝐴𝐵)) < 𝑢)
49 simplr 791 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (vol*‘𝐴) ∈ ℝ)
50 resubcl 10297 . . . . . . . . . . . . . . . . . . 19 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ 𝑢 ∈ ℝ) → ((vol*‘(𝐴𝐵)) − 𝑢) ∈ ℝ)
5150adantrr 752 . . . . . . . . . . . . . . . . . 18 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘(𝐴𝐵)) − 𝑢) ∈ ℝ)
52 posdif 10473 . . . . . . . . . . . . . . . . . . . . 21 ((𝑢 ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (𝑢 < (vol*‘(𝐴𝐵)) ↔ 0 < ((vol*‘(𝐴𝐵)) − 𝑢)))
5352ancoms 469 . . . . . . . . . . . . . . . . . . . 20 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑢 < (vol*‘(𝐴𝐵)) ↔ 0 < ((vol*‘(𝐴𝐵)) − 𝑢)))
5453biimpd 219 . . . . . . . . . . . . . . . . . . 19 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑢 < (vol*‘(𝐴𝐵)) → 0 < ((vol*‘(𝐴𝐵)) − 𝑢)))
5554impr 648 . . . . . . . . . . . . . . . . . 18 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → 0 < ((vol*‘(𝐴𝐵)) − 𝑢))
5651, 55elrpd 11821 . . . . . . . . . . . . . . . . 17 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘(𝐴𝐵)) − 𝑢) ∈ ℝ+)
57 3nn 11138 . . . . . . . . . . . . . . . . . 18 3 ∈ ℕ
58 nnrp 11794 . . . . . . . . . . . . . . . . . 18 (3 ∈ ℕ → 3 ∈ ℝ+)
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . 17 3 ∈ ℝ+
60 rpdivcl 11808 . . . . . . . . . . . . . . . . 17 ((((vol*‘(𝐴𝐵)) − 𝑢) ∈ ℝ+ ∧ 3 ∈ ℝ+) → (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℝ+)
6156, 59, 60sylancl 693 . . . . . . . . . . . . . . . 16 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℝ+)
625, 61sylan 488 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℝ+)
6349, 62ltsubrpd 11856 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol*‘𝐴))
6463adantr 481 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) → ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol*‘𝐴))
65 simpr 477 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) → (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ))
6664, 65breqtrd 4644 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) → ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ))
67 reex 9979 . . . . . . . . . . . . . . . . . 18 ℝ ∈ V
6867ssex 4767 . . . . . . . . . . . . . . . . 17 (𝐴 ⊆ ℝ → 𝐴 ∈ V)
6968adantr 481 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → 𝐴 ∈ V)
70 sseq1 3610 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐴 → (𝑣 ⊆ ℝ ↔ 𝐴 ⊆ ℝ))
71 fveq2 6153 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐴 → (vol*‘𝑣) = (vol*‘𝐴))
7271eleq1d 2683 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐴 → ((vol*‘𝑣) ∈ ℝ ↔ (vol*‘𝐴) ∈ ℝ))
7370, 72anbi12d 746 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → ((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) ↔ (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)))
74 sseq2 3611 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 = 𝐴 → (𝑏𝑣𝑏𝐴))
7574anbi1d 740 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝐴 → ((𝑏𝑣𝑦 = (vol‘𝑏)) ↔ (𝑏𝐴𝑦 = (vol‘𝑏))))
7675rexbidv 3046 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐴 → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))))
7776abbidv 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐴 → {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} = {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))})
7877sseq1d 3616 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐴 → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ⊆ ℝ ↔ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ⊆ ℝ))
7977neeq1d 2849 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐴 → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ≠ ∅ ↔ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ≠ ∅))
8077raleqdv 3136 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐴 → (∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}𝑧𝑥))
8180rexbidv 3046 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐴 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}𝑧𝑥))
8278, 79, 813anbi123d 1396 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → (({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥) ↔ ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}𝑧𝑥)))
8373, 82imbi12d 334 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐴 → (((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥)) ↔ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}𝑧𝑥))))
84 simpr 477 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑣𝑦 = (vol‘𝑏)) → 𝑦 = (vol‘𝑏))
8584, 36sylan9eqr 2677 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝑣𝑦 = (vol‘𝑏))) → 𝑦 = (vol*‘𝑏))
8685adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) ∧ (𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝑣𝑦 = (vol‘𝑏)))) → 𝑦 = (vol*‘𝑏))
87 simprl 793 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝑣𝑦 = (vol‘𝑏))) → 𝑏𝑣)
88 ovolsscl 23177 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑏𝑣𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) → (vol*‘𝑏) ∈ ℝ)
89883expb 1263 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑣 ∧ (𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ)) → (vol*‘𝑏) ∈ ℝ)
9089ancoms 469 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) ∧ 𝑏𝑣) → (vol*‘𝑏) ∈ ℝ)
9187, 90sylan2 491 . . . . . . . . . . . . . . . . . . . . 21 (((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) ∧ (𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝑣𝑦 = (vol‘𝑏)))) → (vol*‘𝑏) ∈ ℝ)
9286, 91eqeltrd 2698 . . . . . . . . . . . . . . . . . . . 20 (((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) ∧ (𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝑣𝑦 = (vol‘𝑏)))) → 𝑦 ∈ ℝ)
9392rexlimdvaa 3026 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏)) → 𝑦 ∈ ℝ))
9493abssdv 3660 . . . . . . . . . . . . . . . . . 18 ((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) → {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ⊆ ℝ)
95 retop 22488 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ Top
96 0cld 20765 . . . . . . . . . . . . . . . . . . . . . 22 ((topGen‘ran (,)) ∈ Top → ∅ ∈ (Clsd‘(topGen‘ran (,))))
9795, 96ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ∅ ∈ (Clsd‘(topGen‘ran (,)))
98 0ss 3949 . . . . . . . . . . . . . . . . . . . . . 22 ∅ ⊆ 𝑣
99 0mbl 23230 . . . . . . . . . . . . . . . . . . . . . . . 24 ∅ ∈ dom vol
100 mblvol 23221 . . . . . . . . . . . . . . . . . . . . . . . 24 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
10199, 100ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (vol‘∅) = (vol*‘∅)
102 ovol0 23184 . . . . . . . . . . . . . . . . . . . . . . 23 (vol*‘∅) = 0
103101, 102eqtr2i 2644 . . . . . . . . . . . . . . . . . . . . . 22 0 = (vol‘∅)
10498, 103pm3.2i 471 . . . . . . . . . . . . . . . . . . . . 21 (∅ ⊆ 𝑣 ∧ 0 = (vol‘∅))
105 sseq1 3610 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ∅ → (𝑏𝑣 ↔ ∅ ⊆ 𝑣))
106 fveq2 6153 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏 = ∅ → (vol‘𝑏) = (vol‘∅))
107106eqeq2d 2631 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 = ∅ → (0 = (vol‘𝑏) ↔ 0 = (vol‘∅)))
108105, 107anbi12d 746 . . . . . . . . . . . . . . . . . . . . . 22 (𝑏 = ∅ → ((𝑏𝑣 ∧ 0 = (vol‘𝑏)) ↔ (∅ ⊆ 𝑣 ∧ 0 = (vol‘∅))))
109108rspcev 3298 . . . . . . . . . . . . . . . . . . . . 21 ((∅ ∈ (Clsd‘(topGen‘ran (,))) ∧ (∅ ⊆ 𝑣 ∧ 0 = (vol‘∅))) → ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣 ∧ 0 = (vol‘𝑏)))
11097, 104, 109mp2an 707 . . . . . . . . . . . . . . . . . . . 20 𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣 ∧ 0 = (vol‘𝑏))
111 c0ex 9986 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ V
112 eqeq1 2625 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 0 → (𝑦 = (vol‘𝑏) ↔ 0 = (vol‘𝑏)))
113112anbi2d 739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 0 → ((𝑏𝑣𝑦 = (vol‘𝑏)) ↔ (𝑏𝑣 ∧ 0 = (vol‘𝑏))))
114113rexbidv 3046 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 0 → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣 ∧ 0 = (vol‘𝑏))))
115111, 114spcev 3289 . . . . . . . . . . . . . . . . . . . 20 (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣 ∧ 0 = (vol‘𝑏)) → ∃𝑦𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏)))
116110, 115ax-mp 5 . . . . . . . . . . . . . . . . . . 19 𝑦𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))
117 abn0 3933 . . . . . . . . . . . . . . . . . . . 20 ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ≠ ∅ ↔ ∃𝑦𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏)))
118117biimpri 218 . . . . . . . . . . . . . . . . . . 19 (∃𝑦𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏)) → {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ≠ ∅)
119116, 118mp1i 13 . . . . . . . . . . . . . . . . . 18 ((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) → {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ≠ ∅)
120 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏𝑣𝑧 = (vol‘𝑏)) → 𝑧 = (vol‘𝑏))
121120, 36sylan9eqr 2677 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝑣𝑧 = (vol‘𝑏))) → 𝑧 = (vol*‘𝑏))
122121adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ⊆ ℝ ∧ (𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝑣𝑧 = (vol‘𝑏)))) → 𝑧 = (vol*‘𝑏))
123 simprl 793 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝑣𝑧 = (vol‘𝑏))) → 𝑏𝑣)
124 ovolss 23176 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑏𝑣𝑣 ⊆ ℝ) → (vol*‘𝑏) ≤ (vol*‘𝑣))
125124ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 ⊆ ℝ ∧ 𝑏𝑣) → (vol*‘𝑏) ≤ (vol*‘𝑣))
126123, 125sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ⊆ ℝ ∧ (𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝑣𝑧 = (vol‘𝑏)))) → (vol*‘𝑏) ≤ (vol*‘𝑣))
127122, 126eqbrtrd 4640 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣 ⊆ ℝ ∧ (𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝑣𝑧 = (vol‘𝑏)))) → 𝑧 ≤ (vol*‘𝑣))
128127rexlimdvaa 3026 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ⊆ ℝ → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑧 = (vol‘𝑏)) → 𝑧 ≤ (vol*‘𝑣)))
129128alrimiv 1852 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 ⊆ ℝ → ∀𝑧(∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑧 = (vol‘𝑏)) → 𝑧 ≤ (vol*‘𝑣)))
130 eqeq1 2625 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑧 → (𝑦 = (vol‘𝑏) ↔ 𝑧 = (vol‘𝑏)))
131130anbi2d 739 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑧 → ((𝑏𝑣𝑦 = (vol‘𝑏)) ↔ (𝑏𝑣𝑧 = (vol‘𝑏))))
132131rexbidv 3046 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑧 → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑧 = (vol‘𝑏))))
133132ralab 3353 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧 ≤ (vol*‘𝑣) ↔ ∀𝑧(∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑧 = (vol‘𝑏)) → 𝑧 ≤ (vol*‘𝑣)))
134129, 133sylibr 224 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ⊆ ℝ → ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧 ≤ (vol*‘𝑣))
135 breq2 4622 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (vol*‘𝑣) → (𝑧𝑥𝑧 ≤ (vol*‘𝑣)))
136135ralbidv 2981 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = (vol*‘𝑣) → (∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧 ≤ (vol*‘𝑣)))
137136rspcev 3298 . . . . . . . . . . . . . . . . . . . 20 (((vol*‘𝑣) ∈ ℝ ∧ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧 ≤ (vol*‘𝑣)) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥)
138134, 137sylan2 491 . . . . . . . . . . . . . . . . . . 19 (((vol*‘𝑣) ∈ ℝ ∧ 𝑣 ⊆ ℝ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥)
139138ancoms 469 . . . . . . . . . . . . . . . . . 18 ((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥)
14094, 119, 1393jca 1240 . . . . . . . . . . . . . . . . 17 ((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥))
14183, 140vtoclg 3255 . . . . . . . . . . . . . . . 16 (𝐴 ∈ V → ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}𝑧𝑥)))
14269, 141mpcom 38 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}𝑧𝑥))
143142adantr 481 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}𝑧𝑥))
14462rpred 11824 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℝ)
14549, 144resubcld 10410 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ)
146 suprlub 10939 . . . . . . . . . . . . . 14 ((({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}𝑧𝑥) ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ) → (((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ↔ ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣))
147143, 145, 146syl2anc 692 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ↔ ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣))
148147adantr 481 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) → (((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ↔ ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣))
14966, 148mpbid 222 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) → ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣)
150 eqeq1 2625 . . . . . . . . . . . . . . 15 (𝑦 = 𝑣 → (𝑦 = (vol‘𝑏) ↔ 𝑣 = (vol‘𝑏)))
151150anbi2d 739 . . . . . . . . . . . . . 14 (𝑦 = 𝑣 → ((𝑏𝐴𝑦 = (vol‘𝑏)) ↔ (𝑏𝐴𝑣 = (vol‘𝑏))))
152151rexbidv 3046 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑣 = (vol‘𝑏))))
153152rexab 3355 . . . . . . . . . . . 12 (∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣 ↔ ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑣 = (vol‘𝑏)) ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣))
154 breq2 4622 . . . . . . . . . . . . . . . . 17 (𝑣 = (vol‘𝑏) → (((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣 ↔ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏)))
155154ad2antll 764 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝐴𝑣 = (vol‘𝑏))) → (((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣 ↔ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏)))
156 sseq1 3610 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑏 → (𝑠𝐴𝑏𝐴))
157 fveq2 6153 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑏 → (vol‘𝑠) = (vol‘𝑏))
158157breq2d 4630 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑏 → (((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠) ↔ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏)))
159156, 158anbi12d 746 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑏 → ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ↔ (𝑏𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏))))
160159rspcev 3298 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏))) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)))
161160expr 642 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑏𝐴) → (((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠))))
162161adantrr 752 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝐴𝑣 = (vol‘𝑏))) → (((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠))))
163155, 162sylbid 230 . . . . . . . . . . . . . . 15 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝐴𝑣 = (vol‘𝑏))) → (((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣 → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠))))
164163rexlimiva 3022 . . . . . . . . . . . . . 14 (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑣 = (vol‘𝑏)) → (((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣 → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠))))
165164imp 445 . . . . . . . . . . . . 13 ((∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑣 = (vol‘𝑏)) ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)))
166165exlimiv 1855 . . . . . . . . . . . 12 (∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑣 = (vol‘𝑏)) ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)))
167153, 166sylbi 207 . . . . . . . . . . 11 (∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))} ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣 → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)))
168149, 167syl 17 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < )) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)))
169168ex 450 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠))))
170169adantlr 750 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠))))
171 simplrr 800 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (vol*‘𝐵) ∈ ℝ)
17262adantlr 750 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℝ+)
173171, 172ltsubrpd 11856 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol*‘𝐵))
174173adantr 481 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < )) → ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol*‘𝐵))
175 simpr 477 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < )) → (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ))
176174, 175breqtrd 4644 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < )) → ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ))
17767ssex 4767 . . . . . . . . . . . . . . . 16 (𝐵 ⊆ ℝ → 𝐵 ∈ V)
178177adantr 481 . . . . . . . . . . . . . . 15 ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → 𝐵 ∈ V)
179 sseq1 3610 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐵 → (𝑣 ⊆ ℝ ↔ 𝐵 ⊆ ℝ))
180 fveq2 6153 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐵 → (vol*‘𝑣) = (vol*‘𝐵))
181180eleq1d 2683 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐵 → ((vol*‘𝑣) ∈ ℝ ↔ (vol*‘𝐵) ∈ ℝ))
182179, 181anbi12d 746 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐵 → ((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) ↔ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)))
183 sseq2 3611 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = 𝐵 → (𝑏𝑣𝑏𝐵))
184183anbi1d 740 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝐵 → ((𝑏𝑣𝑦 = (vol‘𝑏)) ↔ (𝑏𝐵𝑦 = (vol‘𝑏))))
185184rexbidv 3046 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐵 → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))))
186185abbidv 2738 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐵 → {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} = {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))})
187186sseq1d 3616 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐵 → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ⊆ ℝ ↔ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ⊆ ℝ))
188186neeq1d 2849 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐵 → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ≠ ∅ ↔ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ≠ ∅))
189186raleqdv 3136 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐵 → (∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}𝑧𝑥))
190189rexbidv 3046 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐵 → (∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}𝑧𝑥))
191187, 188, 1903anbi123d 1396 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐵 → (({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥) ↔ ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}𝑧𝑥)))
192182, 191imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑣 = 𝐵 → (((𝑣 ⊆ ℝ ∧ (vol*‘𝑣) ∈ ℝ) → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝑣𝑦 = (vol‘𝑏))}𝑧𝑥)) ↔ ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}𝑧𝑥))))
193192, 140vtoclg 3255 . . . . . . . . . . . . . . 15 (𝐵 ∈ V → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}𝑧𝑥)))
194178, 193mpcom 38 . . . . . . . . . . . . . 14 ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}𝑧𝑥))
195194ad2antlr 762 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}𝑧𝑥))
196144adantlr 750 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℝ)
197171, 196resubcld 10410 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ)
198 suprlub 10939 . . . . . . . . . . . . 13 ((({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ⊆ ℝ ∧ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑧 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}𝑧𝑥) ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ) → (((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ) ↔ ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣))
199195, 197, 198syl2anc 692 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ) ↔ ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣))
200199adantr 481 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < )) → (((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ) ↔ ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣))
201176, 200mpbid 222 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < )) → ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣)
202150anbi2d 739 . . . . . . . . . . . . 13 (𝑦 = 𝑣 → ((𝑏𝐵𝑦 = (vol‘𝑏)) ↔ (𝑏𝐵𝑣 = (vol‘𝑏))))
203202rexbidv 3046 . . . . . . . . . . . 12 (𝑦 = 𝑣 → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑣 = (vol‘𝑏))))
204203rexab 3355 . . . . . . . . . . 11 (∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣 ↔ ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑣 = (vol‘𝑏)) ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣))
205 breq2 4622 . . . . . . . . . . . . . . . 16 (𝑣 = (vol‘𝑏) → (((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣 ↔ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏)))
206205ad2antll 764 . . . . . . . . . . . . . . 15 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝐵𝑣 = (vol‘𝑏))) → (((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣 ↔ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏)))
207 sseq1 3610 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑏 → (𝑤𝐵𝑏𝐵))
208 fveq2 6153 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑏 → (vol‘𝑤) = (vol‘𝑏))
209208breq2d 4630 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑏 → (((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤) ↔ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏)))
210207, 209anbi12d 746 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑏 → ((𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)) ↔ (𝑏𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏))))
211210rspcev 3298 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏))) → ∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))(𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))
212211expr 642 . . . . . . . . . . . . . . . 16 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑏𝐵) → (((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏) → ∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))(𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))))
213212adantrr 752 . . . . . . . . . . . . . . 15 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝐵𝑣 = (vol‘𝑏))) → (((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑏) → ∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))(𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))))
214206, 213sylbid 230 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑏𝐵𝑣 = (vol‘𝑏))) → (((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣 → ∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))(𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))))
215214rexlimiva 3022 . . . . . . . . . . . . 13 (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑣 = (vol‘𝑏)) → (((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣 → ∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))(𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))))
216215imp 445 . . . . . . . . . . . 12 ((∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑣 = (vol‘𝑏)) ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣) → ∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))(𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))
217216exlimiv 1855 . . . . . . . . . . 11 (∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑣 = (vol‘𝑏)) ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣) → ∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))(𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))
218204, 217sylbi 207 . . . . . . . . . 10 (∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))} ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < 𝑣 → ∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))(𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))
219201, 218syl 17 . . . . . . . . 9 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < )) → ∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))(𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))
220219ex 450 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ) → ∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))(𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))))
221170, 220anim12d 585 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < )) → (∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ ∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))(𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))))
222 reeanv 3100 . . . . . . 7 (∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))) ↔ (∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))(𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ ∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))(𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))))
223221, 222syl6ibr 242 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < )) → ∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))))
224 eqid 2621 . . . . . . . . . . . . . 14 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
225224ovolgelb 23171 . . . . . . . . . . . . 13 ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ ∧ (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
2262253expa 1262 . . . . . . . . . . . 12 (((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
22762, 226sylan2 491 . . . . . . . . . . 11 (((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵))))) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
228227ancoms 469 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
229228an32s 845 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
230 elmapi 7831 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
231 ssid 3608 . . . . . . . . . . . . . . 15 ran ((,) ∘ 𝑓) ⊆ ran ((,) ∘ 𝑓)
232224ovollb 23170 . . . . . . . . . . . . . . 15 ((𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ran ((,) ∘ 𝑓) ⊆ ran ((,) ∘ 𝑓)) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
233231, 232mpan2 706 . . . . . . . . . . . . . 14 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
234233adantl 482 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
235 eqid 2621 . . . . . . . . . . . . . . . 16 ((abs ∘ − ) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓)
236235, 224ovolsf 23164 . . . . . . . . . . . . . . 15 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞))
237 frn 6015 . . . . . . . . . . . . . . . 16 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ (0[,)+∞))
238 icossxr 12208 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℝ*
239237, 238syl6ss 3599 . . . . . . . . . . . . . . 15 (seq1( + , ((abs ∘ − ) ∘ 𝑓)):ℕ⟶(0[,)+∞) → ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ*)
240 supxrcl 12096 . . . . . . . . . . . . . . 15 (ran seq1( + , ((abs ∘ − ) ∘ 𝑓)) ⊆ ℝ* → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
241236, 239, 2403syl 18 . . . . . . . . . . . . . 14 (𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ*)
242 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝐵) ∈ ℝ)
243 readdcl 9971 . . . . . . . . . . . . . . . . 17 (((vol*‘𝐵) ∈ ℝ ∧ (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℝ) → ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ)
244242, 144, 243syl2anr 495 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ)
245244rexrd 10041 . . . . . . . . . . . . . . 15 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ*)
246245an32s 845 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ*)
247 rncoss 5351 . . . . . . . . . . . . . . . . . 18 ran ((,) ∘ 𝑓) ⊆ ran (,)
248247unissi 4432 . . . . . . . . . . . . . . . . 17 ran ((,) ∘ 𝑓) ⊆ ran (,)
249 unirnioo 12223 . . . . . . . . . . . . . . . . 17 ℝ = ran (,)
250248, 249sseqtr4i 3622 . . . . . . . . . . . . . . . 16 ran ((,) ∘ 𝑓) ⊆ ℝ
251 ovolcl 23169 . . . . . . . . . . . . . . . 16 ( ran ((,) ∘ 𝑓) ⊆ ℝ → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ*)
252250, 251ax-mp 5 . . . . . . . . . . . . . . 15 (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ*
253 xrletr 11941 . . . . . . . . . . . . . . 15 (((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ* ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ*) → (((vol*‘ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
254252, 253mp3an1 1408 . . . . . . . . . . . . . 14 ((sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ*) → (((vol*‘ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
255241, 246, 254syl2anr 495 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (((vol*‘ ran ((,) ∘ 𝑓)) ≤ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
256234, 255mpand 710 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
257230, 256sylan2 491 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
258257anim2d 588 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((𝐵 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) → (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))))
259258reximdva 3012 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))))
260229, 259mpd 15 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
261 rexex 2997 . . . . . . . 8 (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) → ∃𝑓(𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
262260, 261syl 17 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ∃𝑓(𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
26316cldss 20756 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (Clsd‘(topGen‘ran (,))) → 𝑠 ⊆ ℝ)
264 indif2 3851 . . . . . . . . . . . . . . . . . 18 (𝑠 ∩ (ℝ ∖ ran ((,) ∘ 𝑓))) = ((𝑠 ∩ ℝ) ∖ ran ((,) ∘ 𝑓))
265 df-ss 3573 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ⊆ ℝ ↔ (𝑠 ∩ ℝ) = 𝑠)
266265biimpi 206 . . . . . . . . . . . . . . . . . . 19 (𝑠 ⊆ ℝ → (𝑠 ∩ ℝ) = 𝑠)
267266difeq1d 3710 . . . . . . . . . . . . . . . . . 18 (𝑠 ⊆ ℝ → ((𝑠 ∩ ℝ) ∖ ran ((,) ∘ 𝑓)) = (𝑠 ran ((,) ∘ 𝑓)))
268264, 267syl5eq 2667 . . . . . . . . . . . . . . . . 17 (𝑠 ⊆ ℝ → (𝑠 ∩ (ℝ ∖ ran ((,) ∘ 𝑓))) = (𝑠 ran ((,) ∘ 𝑓)))
269263, 268syl 17 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (Clsd‘(topGen‘ran (,))) → (𝑠 ∩ (ℝ ∖ ran ((,) ∘ 𝑓))) = (𝑠 ran ((,) ∘ 𝑓)))
270 retopbas 22487 . . . . . . . . . . . . . . . . . . . . 21 ran (,) ∈ TopBases
271 bastg 20694 . . . . . . . . . . . . . . . . . . . . 21 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
272270, 271ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ran (,) ⊆ (topGen‘ran (,))
273247, 272sstri 3596 . . . . . . . . . . . . . . . . . . 19 ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,))
274 uniopn 20634 . . . . . . . . . . . . . . . . . . 19 (((topGen‘ran (,)) ∈ Top ∧ ran ((,) ∘ 𝑓) ⊆ (topGen‘ran (,))) → ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)))
27595, 273, 274mp2an 707 . . . . . . . . . . . . . . . . . 18 ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,))
27616opncld 20760 . . . . . . . . . . . . . . . . . 18 (((topGen‘ran (,)) ∈ Top ∧ ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,))) → (ℝ ∖ ran ((,) ∘ 𝑓)) ∈ (Clsd‘(topGen‘ran (,))))
27795, 275, 276mp2an 707 . . . . . . . . . . . . . . . . 17 (ℝ ∖ ran ((,) ∘ 𝑓)) ∈ (Clsd‘(topGen‘ran (,)))
278 incld 20770 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ (ℝ ∖ ran ((,) ∘ 𝑓)) ∈ (Clsd‘(topGen‘ran (,)))) → (𝑠 ∩ (ℝ ∖ ran ((,) ∘ 𝑓))) ∈ (Clsd‘(topGen‘ran (,))))
279277, 278mpan2 706 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (Clsd‘(topGen‘ran (,))) → (𝑠 ∩ (ℝ ∖ ran ((,) ∘ 𝑓))) ∈ (Clsd‘(topGen‘ran (,))))
280269, 279eqeltrrd 2699 . . . . . . . . . . . . . . 15 (𝑠 ∈ (Clsd‘(topGen‘ran (,))) → (𝑠 ran ((,) ∘ 𝑓)) ∈ (Clsd‘(topGen‘ran (,))))
281280adantr 481 . . . . . . . . . . . . . 14 ((𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,)))) → (𝑠 ran ((,) ∘ 𝑓)) ∈ (Clsd‘(topGen‘ran (,))))
282281ad2antlr 762 . . . . . . . . . . . . 13 ((((𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (𝑠 ran ((,) ∘ 𝑓)) ∈ (Clsd‘(topGen‘ran (,))))
283 simprll 801 . . . . . . . . . . . . . 14 ((((𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → 𝑠𝐴)
284 simplll 797 . . . . . . . . . . . . . 14 ((((𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → 𝐵 ran ((,) ∘ 𝑓))
285283, 284ssdif2d 3732 . . . . . . . . . . . . 13 ((((𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (𝑠 ran ((,) ∘ 𝑓)) ⊆ (𝐴𝐵))
286 fveq2 6153 . . . . . . . . . . . . . . . . 17 ((𝑠 ran ((,) ∘ 𝑓)) = 𝑏 → (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol‘𝑏))
287286eqcoms 2629 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑠 ran ((,) ∘ 𝑓)) → (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol‘𝑏))
288287biantrud 528 . . . . . . . . . . . . . . 15 (𝑏 = (𝑠 ran ((,) ∘ 𝑓)) → (𝑏 ⊆ (𝐴𝐵) ↔ (𝑏 ⊆ (𝐴𝐵) ∧ (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol‘𝑏))))
289 sseq1 3610 . . . . . . . . . . . . . . 15 (𝑏 = (𝑠 ran ((,) ∘ 𝑓)) → (𝑏 ⊆ (𝐴𝐵) ↔ (𝑠 ran ((,) ∘ 𝑓)) ⊆ (𝐴𝐵)))
290288, 289bitr3d 270 . . . . . . . . . . . . . 14 (𝑏 = (𝑠 ran ((,) ∘ 𝑓)) → ((𝑏 ⊆ (𝐴𝐵) ∧ (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol‘𝑏)) ↔ (𝑠 ran ((,) ∘ 𝑓)) ⊆ (𝐴𝐵)))
291290rspcev 3298 . . . . . . . . . . . . 13 (((𝑠 ran ((,) ∘ 𝑓)) ∈ (Clsd‘(topGen‘ran (,))) ∧ (𝑠 ran ((,) ∘ 𝑓)) ⊆ (𝐴𝐵)) → ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol‘𝑏)))
292282, 285, 291syl2anc 692 . . . . . . . . . . . 12 ((((𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol‘𝑏)))
293292adantlll 753 . . . . . . . . . . 11 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol‘𝑏)))
294 difss 3720 . . . . . . . . . . . . . . . 16 ((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))) ⊆ (𝐴𝐵)
295294, 3sstri 3596 . . . . . . . . . . . . . . 15 ((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))) ⊆ 𝐴
296 ovolsscl 23177 . . . . . . . . . . . . . . 15 ((((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓)))) ∈ ℝ)
297295, 296mp3an1 1408 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓)))) ∈ ℝ)
298297ad5antr 769 . . . . . . . . . . . . 13 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓)))) ∈ ℝ)
2995ad5antr 769 . . . . . . . . . . . . 13 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘(𝐴𝐵)) ∈ ℝ)
300 simpl 473 . . . . . . . . . . . . . 14 ((𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵))) → 𝑢 ∈ ℝ)
301300ad4antlr 768 . . . . . . . . . . . . 13 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → 𝑢 ∈ ℝ)
302 difdif2 3865 . . . . . . . . . . . . . . 15 ((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))) = (((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)))
303302fveq2i 6156 . . . . . . . . . . . . . 14 (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓)))) = (vol*‘(((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓))))
304 difss 3720 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵) ∖ 𝑠) ⊆ (𝐴𝐵)
305304, 3sstri 3596 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵) ∖ 𝑠) ⊆ 𝐴
306 inss1 3816 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)) ⊆ (𝐴𝐵)
307306, 3sstri 3596 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)) ⊆ 𝐴
308305, 307unssi 3771 . . . . . . . . . . . . . . . . 17 (((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓))) ⊆ 𝐴
309 ovolsscl 23177 . . . . . . . . . . . . . . . . 17 (((((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓))) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)))) ∈ ℝ)
310308, 309mp3an1 1408 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)))) ∈ ℝ)
311310ad5antr 769 . . . . . . . . . . . . . . 15 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘(((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)))) ∈ ℝ)
312 difss 3720 . . . . . . . . . . . . . . . . . 18 (𝐴𝑠) ⊆ 𝐴
313 ovolsscl 23177 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑠) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝑠)) ∈ ℝ)
314312, 313mp3an1 1408 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝑠)) ∈ ℝ)
315314ad5antr 769 . . . . . . . . . . . . . . . 16 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘(𝐴𝑠)) ∈ ℝ)
316171, 196readdcld 10021 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ)
317316, 252jctil 559 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ* ∧ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ))
318 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))
319 ovolge0 23172 . . . . . . . . . . . . . . . . . . . . 21 ( ran ((,) ∘ 𝑓) ⊆ ℝ → 0 ≤ (vol*‘ ran ((,) ∘ 𝑓)))
320250, 319ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 0 ≤ (vol*‘ ran ((,) ∘ 𝑓))
321318, 320jctil 559 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) → (0 ≤ (vol*‘ ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
322 xrrege0 11956 . . . . . . . . . . . . . . . . . . 19 ((((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ* ∧ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ) ∧ (0 ≤ (vol*‘ ran ((,) ∘ 𝑓)) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
323317, 321, 322syl2an 494 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)
324 difss 3720 . . . . . . . . . . . . . . . . . . 19 ( ran ((,) ∘ 𝑓) ∖ 𝑤) ⊆ ran ((,) ∘ 𝑓)
325 ovolsscl 23177 . . . . . . . . . . . . . . . . . . 19 ((( ran ((,) ∘ 𝑓) ∖ 𝑤) ⊆ ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)) ∈ ℝ)
326324, 250, 325mp3an12 1411 . . . . . . . . . . . . . . . . . 18 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)) ∈ ℝ)
327323, 326syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)) ∈ ℝ)
328327ad2antrr 761 . . . . . . . . . . . . . . . 16 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)) ∈ ℝ)
329315, 328readdcld 10021 . . . . . . . . . . . . . . 15 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘(𝐴𝑠)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))) ∈ ℝ)
3305, 50sylan 488 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ 𝑢 ∈ ℝ) → ((vol*‘(𝐴𝐵)) − 𝑢) ∈ ℝ)
331330adantrr 752 . . . . . . . . . . . . . . . . 17 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘(𝐴𝐵)) − 𝑢) ∈ ℝ)
332331adantlr 750 . . . . . . . . . . . . . . . 16 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘(𝐴𝐵)) − 𝑢) ∈ ℝ)
333332ad3antrrr 765 . . . . . . . . . . . . . . 15 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘(𝐴𝐵)) − 𝑢) ∈ ℝ)
334 ssdifss 3724 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ ℝ → (𝐴𝑠) ⊆ ℝ)
335324, 250sstri 3596 . . . . . . . . . . . . . . . . . . . . 21 ( ran ((,) ∘ 𝑓) ∖ 𝑤) ⊆ ℝ
336 unss 3770 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴𝑠) ⊆ ℝ ∧ ( ran ((,) ∘ 𝑓) ∖ 𝑤) ⊆ ℝ) ↔ ((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤)) ⊆ ℝ)
337334, 335, 336sylanblc 695 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ⊆ ℝ → ((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤)) ⊆ ℝ)
338 ovolcl 23169 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤)) ⊆ ℝ → (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))) ∈ ℝ*)
339337, 338syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐴 ⊆ ℝ → (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))) ∈ ℝ*)
340339ad4antr 767 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))) ∈ ℝ*)
341314ad3antrrr 765 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘(𝐴𝑠)) ∈ ℝ)
342341, 327readdcld 10021 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → ((vol*‘(𝐴𝑠)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))) ∈ ℝ)
343 ovolge0 23172 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤)) ⊆ ℝ → 0 ≤ (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))))
344337, 343syl 17 . . . . . . . . . . . . . . . . . . 19 (𝐴 ⊆ ℝ → 0 ≤ (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))))
345344ad4antr 767 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → 0 ≤ (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))))
346334adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (𝐴𝑠) ⊆ ℝ)
347346, 314jca 554 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → ((𝐴𝑠) ⊆ ℝ ∧ (vol*‘(𝐴𝑠)) ∈ ℝ))
348347ad3antrrr 765 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → ((𝐴𝑠) ⊆ ℝ ∧ (vol*‘(𝐴𝑠)) ∈ ℝ))
349327, 335jctil 559 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (( ran ((,) ∘ 𝑓) ∖ 𝑤) ⊆ ℝ ∧ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)) ∈ ℝ))
350 ovolun 23190 . . . . . . . . . . . . . . . . . . 19 ((((𝐴𝑠) ⊆ ℝ ∧ (vol*‘(𝐴𝑠)) ∈ ℝ) ∧ (( ran ((,) ∘ 𝑓) ∖ 𝑤) ⊆ ℝ ∧ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)) ∈ ℝ)) → (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))) ≤ ((vol*‘(𝐴𝑠)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))))
351348, 349, 350syl2anc 692 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))) ≤ ((vol*‘(𝐴𝑠)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))))
352 xrrege0 11956 . . . . . . . . . . . . . . . . . 18 ((((vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))) ∈ ℝ* ∧ ((vol*‘(𝐴𝑠)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))) ∈ ℝ) ∧ (0 ≤ (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))) ∧ (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))) ≤ ((vol*‘(𝐴𝑠)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))))) → (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))) ∈ ℝ)
353340, 342, 345, 351, 352syl22anc 1324 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))) ∈ ℝ)
354353ad2antrr 761 . . . . . . . . . . . . . . . 16 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))) ∈ ℝ)
355 ssdif 3728 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∖ 𝑠) ⊆ (𝐴𝑠))
3563, 355ax-mp 5 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵) ∖ 𝑠) ⊆ (𝐴𝑠)
357 incom 3788 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)) = ( ran ((,) ∘ 𝑓) ∩ (𝐴𝐵))
358 indif2 3851 . . . . . . . . . . . . . . . . . . . 20 ( ran ((,) ∘ 𝑓) ∩ (𝐴𝐵)) = (( ran ((,) ∘ 𝑓) ∩ 𝐴) ∖ 𝐵)
359357, 358eqtri 2643 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)) = (( ran ((,) ∘ 𝑓) ∩ 𝐴) ∖ 𝐵)
360 inss1 3816 . . . . . . . . . . . . . . . . . . . . 21 ( ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ran ((,) ∘ 𝑓)
361360a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ( ran ((,) ∘ 𝑓) ∩ 𝐴) ⊆ ran ((,) ∘ 𝑓))
362 simprrl 803 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → 𝑤𝐵)
363361, 362ssdif2d 3732 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (( ran ((,) ∘ 𝑓) ∩ 𝐴) ∖ 𝐵) ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝑤))
364359, 363syl5eqss 3633 . . . . . . . . . . . . . . . . . 18 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)) ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝑤))
365 unss12 3768 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝐵) ∖ 𝑠) ⊆ (𝐴𝑠) ∧ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)) ⊆ ( ran ((,) ∘ 𝑓) ∖ 𝑤)) → (((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓))) ⊆ ((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤)))
366356, 364, 365sylancr 694 . . . . . . . . . . . . . . . . 17 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓))) ⊆ ((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤)))
367337ad6antr 771 . . . . . . . . . . . . . . . . 17 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤)) ⊆ ℝ)
368 ovolss 23176 . . . . . . . . . . . . . . . . 17 (((((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓))) ⊆ ((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤)) ∧ ((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤)) ⊆ ℝ) → (vol*‘(((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)))) ≤ (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))))
369366, 367, 368syl2anc 692 . . . . . . . . . . . . . . . 16 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘(((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)))) ≤ (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))))
370334ad6antr 771 . . . . . . . . . . . . . . . . 17 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (𝐴𝑠) ⊆ ℝ)
371328, 335jctil 559 . . . . . . . . . . . . . . . . 17 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (( ran ((,) ∘ 𝑓) ∖ 𝑤) ⊆ ℝ ∧ (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)) ∈ ℝ))
372370, 315, 371, 350syl21anc 1322 . . . . . . . . . . . . . . . 16 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘((𝐴𝑠) ∪ ( ran ((,) ∘ 𝑓) ∖ 𝑤))) ≤ ((vol*‘(𝐴𝑠)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))))
373311, 354, 329, 369, 372letrd 10146 . . . . . . . . . . . . . . 15 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘(((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)))) ≤ ((vol*‘(𝐴𝑠)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))))
374196ad3antrrr 765 . . . . . . . . . . . . . . . . 17 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℝ)
375196, 196readdcld 10021 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ)
376375ad3antrrr 765 . . . . . . . . . . . . . . . . 17 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) ∈ ℝ)
377 eleq1 2686 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏 = 𝑠 → (𝑏 ∈ dom vol ↔ 𝑠 ∈ dom vol))
378377, 34vtoclga 3261 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (Clsd‘(topGen‘ran (,))) → 𝑠 ∈ dom vol)
379 mblvol 23221 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ dom vol → (vol‘𝑠) = (vol*‘𝑠))
380378, 379syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (Clsd‘(topGen‘ran (,))) → (vol‘𝑠) = (vol*‘𝑠))
381380adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,)))) → (vol‘𝑠) = (vol*‘𝑠))
382 sseqin2 3800 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠𝐴 ↔ (𝐴𝑠) = 𝑠)
383382biimpi 206 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠𝐴 → (𝐴𝑠) = 𝑠)
384383eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠𝐴𝑠 = (𝐴𝑠))
385384fveq2d 6157 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠𝐴 → (vol*‘𝑠) = (vol*‘(𝐴𝑠)))
386385ad2antrr 761 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))) → (vol*‘𝑠) = (vol*‘(𝐴𝑠)))
387381, 386sylan9eq 2675 . . . . . . . . . . . . . . . . . . . . 21 (((𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,)))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol‘𝑠) = (vol*‘(𝐴𝑠)))
388387oveq2d 6626 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,)))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘𝐴) − (vol‘𝑠)) = ((vol*‘𝐴) − (vol*‘(𝐴𝑠))))
389388adantll 749 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘𝐴) − (vol‘𝑠)) = ((vol*‘𝐴) − (vol*‘(𝐴𝑠))))
390378adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,)))) → 𝑠 ∈ dom vol)
391 simplll 797 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
392 mblsplit 23223 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ dom vol ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘𝐴) = ((vol*‘(𝐴𝑠)) + (vol*‘(𝐴𝑠))))
393392eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 ∈ dom vol ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → ((vol*‘(𝐴𝑠)) + (vol*‘(𝐴𝑠))) = (vol*‘𝐴))
3943933expb 1263 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ dom vol ∧ (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) → ((vol*‘(𝐴𝑠)) + (vol*‘(𝐴𝑠))) = (vol*‘𝐴))
395390, 391, 394syl2anr 495 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) → ((vol*‘(𝐴𝑠)) + (vol*‘(𝐴𝑠))) = (vol*‘𝐴))
396395adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘(𝐴𝑠)) + (vol*‘(𝐴𝑠))) = (vol*‘𝐴))
397 simp-6r 810 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘𝐴) ∈ ℝ)
398397recnd 10020 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘𝐴) ∈ ℂ)
399 inss1 3816 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴𝑠) ⊆ 𝐴
400 ovolsscl 23177 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴𝑠) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝑠)) ∈ ℝ)
401399, 400mp3an1 1408 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝑠)) ∈ ℝ)
402401recnd 10020 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝑠)) ∈ ℂ)
403402ad5antr 769 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘(𝐴𝑠)) ∈ ℂ)
404314recnd 10020 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘(𝐴𝑠)) ∈ ℂ)
405404ad5antr 769 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘(𝐴𝑠)) ∈ ℂ)
406398, 403, 405subaddd 10362 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (((vol*‘𝐴) − (vol*‘(𝐴𝑠))) = (vol*‘(𝐴𝑠)) ↔ ((vol*‘(𝐴𝑠)) + (vol*‘(𝐴𝑠))) = (vol*‘𝐴)))
407396, 406mpbird 247 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘𝐴) − (vol*‘(𝐴𝑠))) = (vol*‘(𝐴𝑠)))
408389, 407eqtrd 2655 . . . . . . . . . . . . . . . . . 18 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘𝐴) − (vol‘𝑠)) = (vol*‘(𝐴𝑠)))
409381ad2antlr 762 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol‘𝑠) = (vol*‘𝑠))
410 simpll 789 . . . . . . . . . . . . . . . . . . . . 21 (((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))) → 𝑠𝐴)
411 simp-4l 805 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
412 ovolsscl 23177 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘𝑠) ∈ ℝ)
4134123expb 1263 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠𝐴 ∧ (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ)) → (vol*‘𝑠) ∈ ℝ)
414410, 411, 413syl2anr 495 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘𝑠) ∈ ℝ)
415409, 414eqeltrd 2698 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol‘𝑠) ∈ ℝ)
416 simprlr 802 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠))
417397, 374, 415, 416ltsub23d 10584 . . . . . . . . . . . . . . . . . 18 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘𝐴) − (vol‘𝑠)) < (((vol*‘(𝐴𝐵)) − 𝑢) / 3))
418408, 417eqbrtrrd 4642 . . . . . . . . . . . . . . . . 17 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘(𝐴𝑠)) < (((vol*‘(𝐴𝐵)) − 𝑢) / 3))
419323recnd 10020 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℂ)
420419ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℂ)
421242ad5antlr 770 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘𝐵) ∈ ℝ)
422421recnd 10020 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘𝐵) ∈ ℂ)
423 eleq1 2686 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏 = 𝑤 → (𝑏 ∈ dom vol ↔ 𝑤 ∈ dom vol))
424423, 34vtoclga 3261 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ∈ (Clsd‘(topGen‘ran (,))) → 𝑤 ∈ dom vol)
425 mblvol 23221 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 ∈ dom vol → (vol‘𝑤) = (vol*‘𝑤))
426424, 425syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ∈ (Clsd‘(topGen‘ran (,))) → (vol‘𝑤) = (vol*‘𝑤))
427426adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,)))) → (vol‘𝑤) = (vol*‘𝑤))
428427ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol‘𝑤) = (vol*‘𝑤))
429 simprl 793 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))) → 𝑤𝐵)
430 simp-4r 806 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
431 ovolsscl 23177 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤𝐵𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (vol*‘𝑤) ∈ ℝ)
4324313expb 1263 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤𝐵 ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) → (vol*‘𝑤) ∈ ℝ)
433429, 430, 432syl2anr 495 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘𝑤) ∈ ℝ)
434428, 433eqeltrd 2698 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol‘𝑤) ∈ ℝ)
435434recnd 10020 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol‘𝑤) ∈ ℂ)
436420, 422, 435npncand 10368 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (((vol*‘ ran ((,) ∘ 𝑓)) − (vol*‘𝐵)) + ((vol*‘𝐵) − (vol‘𝑤))) = ((vol*‘ ran ((,) ∘ 𝑓)) − (vol‘𝑤)))
437 simplrl 799 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) → 𝐵 ran ((,) ∘ 𝑓))
438429, 437sylan9ssr 3601 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → 𝑤 ran ((,) ∘ 𝑓))
439 sseqin2 3800 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 ran ((,) ∘ 𝑓) ↔ ( ran ((,) ∘ 𝑓) ∩ 𝑤) = 𝑤)
440438, 439sylib 208 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ( ran ((,) ∘ 𝑓) ∩ 𝑤) = 𝑤)
441440fveq2d 6157 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)) = (vol*‘𝑤))
442428, 441eqtr4d 2658 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol‘𝑤) = (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)))
443442oveq2d 6626 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘ ran ((,) ∘ 𝑓)) − (vol‘𝑤)) = ((vol*‘ ran ((,) ∘ 𝑓)) − (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤))))
444424adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,)))) → 𝑤 ∈ dom vol)
445323, 250jctil 559 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → ( ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ))
446 mblsplit 23223 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑤 ∈ dom vol ∧ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘ ran ((,) ∘ 𝑓)) = ((vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))))
447446eqcomd 2627 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑤 ∈ dom vol ∧ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → ((vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))) = (vol*‘ ran ((,) ∘ 𝑓)))
4484473expb 1263 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑤 ∈ dom vol ∧ ( ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ)) → ((vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))) = (vol*‘ ran ((,) ∘ 𝑓)))
449444, 445, 448syl2anr 495 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) → ((vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))) = (vol*‘ ran ((,) ∘ 𝑓)))
450449adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))) = (vol*‘ ran ((,) ∘ 𝑓)))
451 inss1 3816 . . . . . . . . . . . . . . . . . . . . . . . . 25 ( ran ((,) ∘ 𝑓) ∩ 𝑤) ⊆ ran ((,) ∘ 𝑓)
452 ovolsscl 23177 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((( ran ((,) ∘ 𝑓) ∩ 𝑤) ⊆ ran ((,) ∘ 𝑓) ∧ ran ((,) ∘ 𝑓) ⊆ ℝ ∧ (vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ) → (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)) ∈ ℝ)
453451, 250, 452mp3an12 1411 . . . . . . . . . . . . . . . . . . . . . . . 24 ((vol*‘ ran ((,) ∘ 𝑓)) ∈ ℝ → (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)) ∈ ℝ)
454323, 453syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)) ∈ ℝ)
455454recnd 10020 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)) ∈ ℂ)
456327recnd 10020 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)) ∈ ℂ)
457419, 455, 456subaddd 10362 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (((vol*‘ ran ((,) ∘ 𝑓)) − (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤))) = (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)) ↔ ((vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))) = (vol*‘ ran ((,) ∘ 𝑓))))
458457ad2antrr 761 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (((vol*‘ ran ((,) ∘ 𝑓)) − (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤))) = (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)) ↔ ((vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))) = (vol*‘ ran ((,) ∘ 𝑓))))
459450, 458mpbird 247 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘ ran ((,) ∘ 𝑓)) − (vol*‘( ran ((,) ∘ 𝑓) ∩ 𝑤))) = (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)))
460436, 443, 4593eqtrd 2659 . . . . . . . . . . . . . . . . . 18 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (((vol*‘ ran ((,) ∘ 𝑓)) − (vol*‘𝐵)) + ((vol*‘𝐵) − (vol‘𝑤))) = (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)))
461242ad3antlr 766 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘𝐵) ∈ ℝ)
462323, 461resubcld 10410 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → ((vol*‘ ran ((,) ∘ 𝑓)) − (vol*‘𝐵)) ∈ ℝ)
463462ad2antrr 761 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘ ran ((,) ∘ 𝑓)) − (vol*‘𝐵)) ∈ ℝ)
464421, 434resubcld 10410 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘𝐵) − (vol‘𝑤)) ∈ ℝ)
465 simprr 795 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))
466196adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℝ)
467323, 461, 466lesubadd2d 10578 . . . . . . . . . . . . . . . . . . . . 21 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (((vol*‘ ran ((,) ∘ 𝑓)) − (vol*‘𝐵)) ≤ (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ↔ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
468465, 467mpbird 247 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → ((vol*‘ ran ((,) ∘ 𝑓)) − (vol*‘𝐵)) ≤ (((vol*‘(𝐴𝐵)) − 𝑢) / 3))
469468ad2antrr 761 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘ ran ((,) ∘ 𝑓)) − (vol*‘𝐵)) ≤ (((vol*‘(𝐴𝐵)) − 𝑢) / 3))
470 simprrr 804 . . . . . . . . . . . . . . . . . . . 20 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))
471421, 374, 434, 470ltsub23d 10584 . . . . . . . . . . . . . . . . . . 19 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘𝐵) − (vol‘𝑤)) < (((vol*‘(𝐴𝐵)) − 𝑢) / 3))
472463, 464, 374, 374, 469, 471leltaddd 10601 . . . . . . . . . . . . . . . . . 18 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (((vol*‘ ran ((,) ∘ 𝑓)) − (vol*‘𝐵)) + ((vol*‘𝐵) − (vol‘𝑤))) < ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))
473460, 472eqbrtrrd 4642 . . . . . . . . . . . . . . . . 17 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤)) < ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))
474315, 328, 374, 376, 418, 473lt2addd 10602 . . . . . . . . . . . . . . . 16 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘(𝐴𝑠)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))) < ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
475 df-3 11032 . . . . . . . . . . . . . . . . . . . . . 22 3 = (2 + 1)
476 2cn 11043 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℂ
477 ax-1cn 9946 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
478476, 477addcomi 10179 . . . . . . . . . . . . . . . . . . . . . 22 (2 + 1) = (1 + 2)
479475, 478eqtri 2643 . . . . . . . . . . . . . . . . . . . . 21 3 = (1 + 2)
480479oveq1i 6620 . . . . . . . . . . . . . . . . . . . 20 (3 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) = ((1 + 2) · (((vol*‘(𝐴𝐵)) − 𝑢) / 3))
48162rpcnd 11826 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℂ)
482 adddir 9983 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ (((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℂ) → ((1 + 2) · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) = ((1 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) + (2 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
483477, 476, 482mp3an12 1411 . . . . . . . . . . . . . . . . . . . . . 22 ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) ∈ ℂ → ((1 + 2) · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) = ((1 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) + (2 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
484481, 483syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((1 + 2) · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) = ((1 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) + (2 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
485481mulid2d 10010 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (1 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) = (((vol*‘(𝐴𝐵)) − 𝑢) / 3))
4864812timesd 11227 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (2 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) = ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))
487485, 486oveq12d 6628 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((1 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) + (2 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) = ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
488484, 487eqtrd 2655 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((1 + 2) · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) = ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
489480, 488syl5eq 2667 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (3 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) = ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))))
490331recnd 10020 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((vol*‘(𝐴𝐵)) − 𝑢) ∈ ℂ)
491 3cn 11047 . . . . . . . . . . . . . . . . . . . . 21 3 ∈ ℂ
492 3ne0 11067 . . . . . . . . . . . . . . . . . . . . 21 3 ≠ 0
493 divcan2 10645 . . . . . . . . . . . . . . . . . . . . 21 ((((vol*‘(𝐴𝐵)) − 𝑢) ∈ ℂ ∧ 3 ∈ ℂ ∧ 3 ≠ 0) → (3 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) = ((vol*‘(𝐴𝐵)) − 𝑢))
494491, 492, 493mp3an23 1413 . . . . . . . . . . . . . . . . . . . 20 (((vol*‘(𝐴𝐵)) − 𝑢) ∈ ℂ → (3 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) = ((vol*‘(𝐴𝐵)) − 𝑢))
495490, 494syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (3 · (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) = ((vol*‘(𝐴𝐵)) − 𝑢))
496489, 495eqtr3d 2657 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) = ((vol*‘(𝐴𝐵)) − 𝑢))
497496adantlr 750 . . . . . . . . . . . . . . . . 17 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) = ((vol*‘(𝐴𝐵)) − 𝑢))
498497ad3antrrr 765 . . . . . . . . . . . . . . . 16 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + ((((vol*‘(𝐴𝐵)) − 𝑢) / 3) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3))) = ((vol*‘(𝐴𝐵)) − 𝑢))
499474, 498breqtrd 4644 . . . . . . . . . . . . . . 15 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘(𝐴𝑠)) + (vol*‘( ran ((,) ∘ 𝑓) ∖ 𝑤))) < ((vol*‘(𝐴𝐵)) − 𝑢))
500311, 329, 333, 373, 499lelttrd 10147 . . . . . . . . . . . . . 14 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘(((𝐴𝐵) ∖ 𝑠) ∪ ((𝐴𝐵) ∩ ran ((,) ∘ 𝑓)))) < ((vol*‘(𝐴𝐵)) − 𝑢))
501303, 500syl5eqbr 4653 . . . . . . . . . . . . 13 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓)))) < ((vol*‘(𝐴𝐵)) − 𝑢))
502298, 299, 301, 501ltsub13d 10585 . . . . . . . . . . . 12 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → 𝑢 < ((vol*‘(𝐴𝐵)) − (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))))))
503285adantlll 753 . . . . . . . . . . . . . . 15 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (𝑠 ran ((,) ∘ 𝑓)) ⊆ (𝐴𝐵))
504 sseqin2 3800 . . . . . . . . . . . . . . 15 ((𝑠 ran ((,) ∘ 𝑓)) ⊆ (𝐴𝐵) ↔ ((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓))) = (𝑠 ran ((,) ∘ 𝑓)))
505503, 504sylib 208 . . . . . . . . . . . . . 14 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓))) = (𝑠 ran ((,) ∘ 𝑓)))
506505fveq2d 6157 . . . . . . . . . . . . 13 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓)))) = (vol*‘(𝑠 ran ((,) ∘ 𝑓))))
507 opnmbl 23293 . . . . . . . . . . . . . . . . . . 19 ( ran ((,) ∘ 𝑓) ∈ (topGen‘ran (,)) → ran ((,) ∘ 𝑓) ∈ dom vol)
508275, 507ax-mp 5 . . . . . . . . . . . . . . . . . 18 ran ((,) ∘ 𝑓) ∈ dom vol
509 difmbl 23234 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ dom vol ∧ ran ((,) ∘ 𝑓) ∈ dom vol) → (𝑠 ran ((,) ∘ 𝑓)) ∈ dom vol)
510378, 508, 509sylancl 693 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (Clsd‘(topGen‘ran (,))) → (𝑠 ran ((,) ∘ 𝑓)) ∈ dom vol)
511510adantr 481 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,)))) → (𝑠 ran ((,) ∘ 𝑓)) ∈ dom vol)
512511ad2antlr 762 . . . . . . . . . . . . . . 15 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (𝑠 ran ((,) ∘ 𝑓)) ∈ dom vol)
51313adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (𝐴𝐵) ⊆ ℝ)
514513, 5jca 554 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → ((𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ))
515514ad5antr 769 . . . . . . . . . . . . . . 15 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ))
516 mblsplit 23223 . . . . . . . . . . . . . . . . 17 (((𝑠 ran ((,) ∘ 𝑓)) ∈ dom vol ∧ (𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) = ((vol*‘((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓)))) + (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))))))
5175163expb 1263 . . . . . . . . . . . . . . . 16 (((𝑠 ran ((,) ∘ 𝑓)) ∈ dom vol ∧ ((𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ)) → (vol*‘(𝐴𝐵)) = ((vol*‘((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓)))) + (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))))))
518517eqcomd 2627 . . . . . . . . . . . . . . 15 (((𝑠 ran ((,) ∘ 𝑓)) ∈ dom vol ∧ ((𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ)) → ((vol*‘((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓)))) + (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))))) = (vol*‘(𝐴𝐵)))
519512, 515, 518syl2anc 692 . . . . . . . . . . . . . 14 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓)))) + (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))))) = (vol*‘(𝐴𝐵)))
520299recnd 10020 . . . . . . . . . . . . . . 15 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘(𝐴𝐵)) ∈ ℂ)
521298recnd 10020 . . . . . . . . . . . . . . 15 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓)))) ∈ ℂ)
522 inss1 3816 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓))) ⊆ (𝐴𝐵)
523522, 3sstri 3596 . . . . . . . . . . . . . . . . . 18 ((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓))) ⊆ 𝐴
524 ovolsscl 23177 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓))) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓)))) ∈ ℝ)
525523, 524mp3an1 1408 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → (vol*‘((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓)))) ∈ ℝ)
526525ad5antr 769 . . . . . . . . . . . . . . . 16 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓)))) ∈ ℝ)
527526recnd 10020 . . . . . . . . . . . . . . 15 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol*‘((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓)))) ∈ ℂ)
528520, 521, 527subadd2d 10363 . . . . . . . . . . . . . 14 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (((vol*‘(𝐴𝐵)) − (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))))) = (vol*‘((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓)))) ↔ ((vol*‘((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓)))) + (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))))) = (vol*‘(𝐴𝐵))))
529519, 528mpbird 247 . . . . . . . . . . . . 13 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ((vol*‘(𝐴𝐵)) − (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))))) = (vol*‘((𝐴𝐵) ∩ (𝑠 ran ((,) ∘ 𝑓)))))
530 mblvol 23221 . . . . . . . . . . . . . . . . 17 ((𝑠 ran ((,) ∘ 𝑓)) ∈ dom vol → (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol*‘(𝑠 ran ((,) ∘ 𝑓))))
531509, 530syl 17 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ dom vol ∧ ran ((,) ∘ 𝑓) ∈ dom vol) → (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol*‘(𝑠 ran ((,) ∘ 𝑓))))
532378, 508, 531sylancl 693 . . . . . . . . . . . . . . 15 (𝑠 ∈ (Clsd‘(topGen‘ran (,))) → (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol*‘(𝑠 ran ((,) ∘ 𝑓))))
533532adantr 481 . . . . . . . . . . . . . 14 ((𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,)))) → (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol*‘(𝑠 ran ((,) ∘ 𝑓))))
534533ad2antlr 762 . . . . . . . . . . . . 13 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol*‘(𝑠 ran ((,) ∘ 𝑓))))
535506, 529, 5343eqtr4rd 2666 . . . . . . . . . . . 12 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → (vol‘(𝑠 ran ((,) ∘ 𝑓))) = ((vol*‘(𝐴𝐵)) − (vol*‘((𝐴𝐵) ∖ (𝑠 ran ((,) ∘ 𝑓))))))
536502, 535breqtrrd 4646 . . . . . . . . . . 11 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → 𝑢 < (vol‘(𝑠 ran ((,) ∘ 𝑓))))
537 fvex 6163 . . . . . . . . . . . 12 (vol‘(𝑠 ran ((,) ∘ 𝑓))) ∈ V
538 eqeq1 2625 . . . . . . . . . . . . . . 15 (𝑣 = (vol‘(𝑠 ran ((,) ∘ 𝑓))) → (𝑣 = (vol‘𝑏) ↔ (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol‘𝑏)))
539538anbi2d 739 . . . . . . . . . . . . . 14 (𝑣 = (vol‘(𝑠 ran ((,) ∘ 𝑓))) → ((𝑏 ⊆ (𝐴𝐵) ∧ 𝑣 = (vol‘𝑏)) ↔ (𝑏 ⊆ (𝐴𝐵) ∧ (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol‘𝑏))))
540539rexbidv 3046 . . . . . . . . . . . . 13 (𝑣 = (vol‘(𝑠 ran ((,) ∘ 𝑓))) → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑣 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol‘𝑏))))
541 breq2 4622 . . . . . . . . . . . . 13 (𝑣 = (vol‘(𝑠 ran ((,) ∘ 𝑓))) → (𝑢 < 𝑣𝑢 < (vol‘(𝑠 ran ((,) ∘ 𝑓)))))
542540, 541anbi12d 746 . . . . . . . . . . . 12 (𝑣 = (vol‘(𝑠 ran ((,) ∘ 𝑓))) → ((∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣) ↔ (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol‘𝑏)) ∧ 𝑢 < (vol‘(𝑠 ran ((,) ∘ 𝑓))))))
543537, 542spcev 3289 . . . . . . . . . . 11 ((∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ (vol‘(𝑠 ran ((,) ∘ 𝑓))) = (vol‘𝑏)) ∧ 𝑢 < (vol‘(𝑠 ran ((,) ∘ 𝑓)))) → ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣))
544293, 536, 543syl2anc 692 . . . . . . . . . 10 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣))
545150anbi2d 739 . . . . . . . . . . . 12 (𝑦 = 𝑣 → ((𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏)) ↔ (𝑏 ⊆ (𝐴𝐵) ∧ 𝑣 = (vol‘𝑏))))
546545rexbidv 3046 . . . . . . . . . . 11 (𝑦 = 𝑣 → (∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏)) ↔ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑣 = (vol‘𝑏))))
547546rexab 3355 . . . . . . . . . 10 (∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣 ↔ ∃𝑣(∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑣 = (vol‘𝑏)) ∧ 𝑢 < 𝑣))
548544, 547sylibr 224 . . . . . . . . 9 (((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) ∧ ((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤)))) → ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣)
549548ex 450 . . . . . . . 8 ((((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) ∧ (𝑠 ∈ (Clsd‘(topGen‘ran (,))) ∧ 𝑤 ∈ (Clsd‘(topGen‘ran (,))))) → (((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))) → ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣))
550549rexlimdvva 3032 . . . . . . 7 (((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) ∧ (𝐵 ran ((,) ∘ 𝑓) ∧ (vol*‘ ran ((,) ∘ 𝑓)) ≤ ((vol*‘𝐵) + (((vol*‘(𝐴𝐵)) − 𝑢) / 3)))) → (∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))) → ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣))
551262, 550exlimddv 1860 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (∃𝑠 ∈ (Clsd‘(topGen‘ran (,)))∃𝑤 ∈ (Clsd‘(topGen‘ran (,)))((𝑠𝐴 ∧ ((vol*‘𝐴) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑠)) ∧ (𝑤𝐵 ∧ ((vol*‘𝐵) − (((vol*‘(𝐴𝐵)) − 𝑢) / 3)) < (vol‘𝑤))) → ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣))
552223, 551syld 47 . . . . 5 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ)) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → (((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < )) → ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣))
553552exp31 629 . . . 4 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → ((𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵))) → (((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < )) → ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣))))
554553com34 91 . . 3 ((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) → ((𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) → (((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < )) → ((𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵))) → ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣))))
5555543imp1 1277 . 2 ((((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ))) ∧ (𝑢 ∈ ℝ ∧ 𝑢 < (vol*‘(𝐴𝐵)))) → ∃𝑣 ∈ {𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}𝑢 < 𝑣)
5562, 6, 48, 555eqsupd 8315 1 (((𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) ∧ (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ) ∧ ((vol*‘𝐴) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐴𝑦 = (vol‘𝑏))}, ℝ, < ) ∧ (vol*‘𝐵) = sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏𝐵𝑦 = (vol‘𝑏))}, ℝ, < ))) → sup({𝑦 ∣ ∃𝑏 ∈ (Clsd‘(topGen‘ran (,)))(𝑏 ⊆ (𝐴𝐵) ∧ 𝑦 = (vol‘𝑏))}, ℝ, < ) = (vol*‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036  wal 1478   = wceq 1480  wex 1701  wcel 1987  {cab 2607  wne 2790  wral 2907  wrex 2908  Vcvv 3189  cdif 3556  cun 3557  cin 3558  wss 3559  c0 3896   cuni 4407   class class class wbr 4618   Or wor 4999   × cxp 5077  dom cdm 5079  ran crn 5080  ccom 5083  wf 5848  cfv 5852  (class class class)co 6610  𝑚 cmap 7809  supcsup 8298  cc 9886  cr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893  +∞cpnf 10023  *cxr 10025   < clt 10026  cle 10027  cmin 10218   / cdiv 10636  cn 10972  2c2 11022  3c3 11023  +crp 11784  (,)cioo 12125  [,)cico 12127  seqcseq 12749  abscabs 13916  topGenctg 16030  Topctop 20630  TopBasesctb 20673  Clsdccld 20743  vol*covol 23154  volcvol 23155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-disj 4589  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-omul 7517  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-acn 8720  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-n0 11245  df-z 11330  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-rlim 14162  df-sum 14359  df-rest 16015  df-topgen 16036  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-top 20631  df-topon 20648  df-bases 20674  df-cld 20746  df-cmp 21113  df-ovol 23156  df-vol 23157
This theorem is referenced by:  ismblfin  33117
  Copyright terms: Public domain W3C validator