ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0uz Unicode version

Theorem elnn0uz 9564
Description: A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.)
Assertion
Ref Expression
elnn0uz  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )

Proof of Theorem elnn0uz
StepHypRef Expression
1 nn0uz 9561 . 2  |-  NN0  =  ( ZZ>= `  0 )
21eleq2i 2244 1  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2148   ` cfv 5216   0cc0 7810   NN0cn0 9175   ZZ>=cuz 9527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-inn 8919  df-n0 9176  df-z 9253  df-uz 9528
This theorem is referenced by:  elnn0dc  9610  elfz2nn0  10111  4fvwrd4  10139  2ffzeq  10140  elfzo0  10181  elfzonn0  10185  elfzom1elp1fzo  10201  nn0sinds  10443  hashfz1  10762  hashfz0  10804  resunimafz0  10810  bcxmas  11496  geolim  11518  mertenslem2  11543  mertensabs  11544  efcvgfsum  11674  ege2le3  11678  efcj  11680  effsumlt  11699  efgt1p2  11702  efgt1p  11703
  Copyright terms: Public domain W3C validator