ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn0uz Unicode version

Theorem elnn0uz 9119
Description: A nonnegative integer expressed as a member an upper set of integers. (Contributed by NM, 6-Jun-2006.)
Assertion
Ref Expression
elnn0uz  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )

Proof of Theorem elnn0uz
StepHypRef Expression
1 nn0uz 9116 . 2  |-  NN0  =  ( ZZ>= `  0 )
21eleq2i 2155 1  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 1439   ` cfv 5030   0cc0 7413   NN0cn0 8736   ZZ>=cuz 9082
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-0id 7516  ax-rnegex 7517  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-ltadd 7524
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-iota 4995  df-fun 5032  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-inn 8486  df-n0 8737  df-z 8814  df-uz 9083
This theorem is referenced by:  elfz2nn0  9589  4fvwrd4  9614  2ffzeq  9615  elfzo0  9656  elfzonn0  9660  elfzom1elp1fzo  9676  nn0sinds  9913  hashfz1  10254  hashfz0  10296  resunimafz0  10299  bcxmas  10946  geolim  10968  mertenslem2  10993  mertensabs  10994  efcvgfsum  11020  ege2le3  11024  efcj  11026  effsumlt  11045  efgt1p2  11048  efgt1p  11049
  Copyright terms: Public domain W3C validator