ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recos4p Unicode version

Theorem recos4p 11073
Description: Separate out the first four terms of the infinite series expansion of the cosine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
recos4p  |-  ( A  e.  RR  ->  ( cos `  A )  =  ( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( Re `  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) ) )
Distinct variable groups:    A, k, n   
k, F
Allowed substitution hint:    F( n)

Proof of Theorem recos4p
StepHypRef Expression
1 recosval 11070 . 2  |-  ( A  e.  RR  ->  ( cos `  A )  =  ( Re `  ( exp `  ( _i  x.  A ) ) ) )
2 recn 7538 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
3 efi4p.1 . . . . . 6  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
43efi4p 11071 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) )
52, 4syl 14 . . . 4  |-  ( A  e.  RR  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) )
65fveq2d 5324 . . 3  |-  ( A  e.  RR  ->  (
Re `  ( exp `  ( _i  x.  A
) ) )  =  ( Re `  (
( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) ) )
7 1re 7550 . . . . . . 7  |-  1  e.  RR
8 resqcl 10085 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A ^ 2 )  e.  RR )
98rehalfcld 8725 . . . . . . 7  |-  ( A  e.  RR  ->  (
( A ^ 2 )  /  2 )  e.  RR )
10 resubcl 7809 . . . . . . 7  |-  ( ( 1  e.  RR  /\  ( ( A ^
2 )  /  2
)  e.  RR )  ->  ( 1  -  ( ( A ^
2 )  /  2
) )  e.  RR )
117, 9, 10sylancr 406 . . . . . 6  |-  ( A  e.  RR  ->  (
1  -  ( ( A ^ 2 )  /  2 ) )  e.  RR )
1211recnd 7579 . . . . 5  |-  ( A  e.  RR  ->  (
1  -  ( ( A ^ 2 )  /  2 ) )  e.  CC )
13 ax-icn 7503 . . . . . 6  |-  _i  e.  CC
14 3nn0 8754 . . . . . . . . . 10  |-  3  e.  NN0
15 reexpcl 10035 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  RR )
1614, 15mpan2 417 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A ^ 3 )  e.  RR )
17 6re 8566 . . . . . . . . . 10  |-  6  e.  RR
18 6pos 8586 . . . . . . . . . . 11  |-  0  <  6
1917, 18gt0ap0ii 8167 . . . . . . . . . 10  |-  6 #  0
20 redivclap 8261 . . . . . . . . . 10  |-  ( ( ( A ^ 3 )  e.  RR  /\  6  e.  RR  /\  6 #  0 )  ->  (
( A ^ 3 )  /  6 )  e.  RR )
2117, 19, 20mp3an23 1266 . . . . . . . . 9  |-  ( ( A ^ 3 )  e.  RR  ->  (
( A ^ 3 )  /  6 )  e.  RR )
2216, 21syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( A ^ 3 )  /  6 )  e.  RR )
23 resubcl 7809 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( A ^
3 )  /  6
)  e.  RR )  ->  ( A  -  ( ( A ^
3 )  /  6
) )  e.  RR )
2422, 23mpdan 413 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  RR )
2524recnd 7579 . . . . . 6  |-  ( A  e.  RR  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  CC )
26 mulcl 7532 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( A  -  (
( A ^ 3 )  /  6 ) )  e.  CC )  ->  ( _i  x.  ( A  -  (
( A ^ 3 )  /  6 ) ) )  e.  CC )
2713, 25, 26sylancr 406 . . . . 5  |-  ( A  e.  RR  ->  (
_i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  e.  CC )
2812, 27addcld 7570 . . . 4  |-  ( A  e.  RR  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  ( ( A ^
3 )  /  6
) ) ) )  e.  CC )
29 mulcl 7532 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
3013, 2, 29sylancr 406 . . . . 5  |-  ( A  e.  RR  ->  (
_i  x.  A )  e.  CC )
31 4nn0 8755 . . . . 5  |-  4  e.  NN0
323eftlcl 11041 . . . . 5  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k )  e.  CC )
3330, 31, 32sylancl 405 . . . 4  |-  ( A  e.  RR  ->  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
)  e.  CC )
3428, 33readdd 10456 . . 3  |-  ( A  e.  RR  ->  (
Re `  ( (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  ( ( A ^
3 )  /  6
) ) ) )  +  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) ) )  =  ( ( Re `  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  ( ( A ^
3 )  /  6
) ) ) ) )  +  ( Re
`  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) ) ) )
3511, 24crred 10473 . . . 4  |-  ( A  e.  RR  ->  (
Re `  ( (
1  -  ( ( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  (
( A ^ 3 )  /  6 ) ) ) ) )  =  ( 1  -  ( ( A ^
2 )  /  2
) ) )
3635oveq1d 5683 . . 3  |-  ( A  e.  RR  ->  (
( Re `  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  ( ( A ^
3 )  /  6
) ) ) ) )  +  ( Re
`  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) ) )  =  ( ( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( Re
`  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) ) ) )
376, 34, 363eqtrd 2125 . 2  |-  ( A  e.  RR  ->  (
Re `  ( exp `  ( _i  x.  A
) ) )  =  ( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( Re `  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) ) )
381, 37eqtrd 2121 1  |-  ( A  e.  RR  ->  ( cos `  A )  =  ( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( Re `  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290    e. wcel 1439   class class class wbr 3853    |-> cmpt 3907   ` cfv 5030  (class class class)co 5668   CCcc 7411   RRcr 7412   0cc0 7413   1c1 7414   _ici 7415    + caddc 7416    x. cmul 7418    - cmin 7716   # cap 8121    / cdiv 8202   2c2 8536   3c3 8537   4c4 8538   6c6 8540   NN0cn0 8736   ZZ>=cuz 9082   ^cexp 10017   !cfa 10196   Recre 10337   sum_csu 10805   expce 10995   cosccos 10998
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-nul 3973  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-iinf 4418  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-mulrcl 7507  ax-addcom 7508  ax-mulcom 7509  ax-addass 7510  ax-mulass 7511  ax-distr 7512  ax-i2m1 7513  ax-0lt1 7514  ax-1rid 7515  ax-0id 7516  ax-rnegex 7517  ax-precex 7518  ax-cnre 7519  ax-pre-ltirr 7520  ax-pre-ltwlin 7521  ax-pre-lttrn 7522  ax-pre-apti 7523  ax-pre-ltadd 7524  ax-pre-mulgt0 7525  ax-pre-mulext 7526  ax-arch 7527  ax-caucvg 7528
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-if 3400  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-tr 3945  df-id 4131  df-po 4134  df-iso 4135  df-iord 4204  df-on 4206  df-ilim 4207  df-suc 4209  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-isom 5039  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-1st 5927  df-2nd 5928  df-recs 6086  df-irdg 6151  df-frec 6172  df-1o 6197  df-oadd 6201  df-er 6308  df-en 6514  df-dom 6515  df-fin 6516  df-pnf 7587  df-mnf 7588  df-xr 7589  df-ltxr 7590  df-le 7591  df-sub 7718  df-neg 7719  df-reap 8115  df-ap 8122  df-div 8203  df-inn 8486  df-2 8544  df-3 8545  df-4 8546  df-5 8547  df-6 8548  df-n0 8737  df-z 8814  df-uz 9083  df-q 9168  df-rp 9198  df-ico 9375  df-fz 9488  df-fzo 9617  df-iseq 9916  df-seq3 9917  df-exp 10018  df-fac 10197  df-ihash 10247  df-cj 10339  df-re 10340  df-im 10341  df-rsqrt 10494  df-abs 10495  df-clim 10730  df-isum 10806  df-ef 11001  df-cos 11004
This theorem is referenced by:  cos01bnd  11112
  Copyright terms: Public domain W3C validator