ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resin4p Unicode version

Theorem resin4p 11864
Description: Separate out the first four terms of the infinite series expansion of the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
resin4p  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) ) )
Distinct variable groups:    A, k, n   
k, F
Allowed substitution hint:    F( n)

Proof of Theorem resin4p
StepHypRef Expression
1 resinval 11861 . 2  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( Im `  ( exp `  ( _i  x.  A ) ) ) )
2 recn 8007 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
3 efi4p.1 . . . . . 6  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
43efi4p 11863 . . . . 5  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) )
52, 4syl 14 . . . 4  |-  ( A  e.  RR  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) )
65fveq2d 5559 . . 3  |-  ( A  e.  RR  ->  (
Im `  ( exp `  ( _i  x.  A
) ) )  =  ( Im `  (
( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) ) )
7 1re 8020 . . . . . . 7  |-  1  e.  RR
8 resqcl 10681 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A ^ 2 )  e.  RR )
98rehalfcld 9232 . . . . . . 7  |-  ( A  e.  RR  ->  (
( A ^ 2 )  /  2 )  e.  RR )
10 resubcl 8285 . . . . . . 7  |-  ( ( 1  e.  RR  /\  ( ( A ^
2 )  /  2
)  e.  RR )  ->  ( 1  -  ( ( A ^
2 )  /  2
) )  e.  RR )
117, 9, 10sylancr 414 . . . . . 6  |-  ( A  e.  RR  ->  (
1  -  ( ( A ^ 2 )  /  2 ) )  e.  RR )
1211recnd 8050 . . . . 5  |-  ( A  e.  RR  ->  (
1  -  ( ( A ^ 2 )  /  2 ) )  e.  CC )
13 ax-icn 7969 . . . . . 6  |-  _i  e.  CC
14 3nn0 9261 . . . . . . . . . 10  |-  3  e.  NN0
15 reexpcl 10630 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  RR )
1614, 15mpan2 425 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( A ^ 3 )  e.  RR )
17 6re 9065 . . . . . . . . . 10  |-  6  e.  RR
18 6pos 9085 . . . . . . . . . . 11  |-  0  <  6
1917, 18gt0ap0ii 8649 . . . . . . . . . 10  |-  6 #  0
20 redivclap 8752 . . . . . . . . . 10  |-  ( ( ( A ^ 3 )  e.  RR  /\  6  e.  RR  /\  6 #  0 )  ->  (
( A ^ 3 )  /  6 )  e.  RR )
2117, 19, 20mp3an23 1340 . . . . . . . . 9  |-  ( ( A ^ 3 )  e.  RR  ->  (
( A ^ 3 )  /  6 )  e.  RR )
2216, 21syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  (
( A ^ 3 )  /  6 )  e.  RR )
23 resubcl 8285 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( A ^
3 )  /  6
)  e.  RR )  ->  ( A  -  ( ( A ^
3 )  /  6
) )  e.  RR )
2422, 23mpdan 421 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  RR )
2524recnd 8050 . . . . . 6  |-  ( A  e.  RR  ->  ( A  -  ( ( A ^ 3 )  / 
6 ) )  e.  CC )
26 mulcl 8001 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( A  -  (
( A ^ 3 )  /  6 ) )  e.  CC )  ->  ( _i  x.  ( A  -  (
( A ^ 3 )  /  6 ) ) )  e.  CC )
2713, 25, 26sylancr 414 . . . . 5  |-  ( A  e.  RR  ->  (
_i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) )  e.  CC )
2812, 27addcld 8041 . . . 4  |-  ( A  e.  RR  ->  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  ( ( A ^
3 )  /  6
) ) ) )  e.  CC )
29 mulcl 8001 . . . . . 6  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
3013, 2, 29sylancr 414 . . . . 5  |-  ( A  e.  RR  ->  (
_i  x.  A )  e.  CC )
31 4nn0 9262 . . . . 5  |-  4  e.  NN0
323eftlcl 11834 . . . . 5  |-  ( ( ( _i  x.  A
)  e.  CC  /\  4  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k )  e.  CC )
3330, 31, 32sylancl 413 . . . 4  |-  ( A  e.  RR  ->  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
)  e.  CC )
3428, 33imaddd 11107 . . 3  |-  ( A  e.  RR  ->  (
Im `  ( (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  ( ( A ^
3 )  /  6
) ) ) )  +  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) ) )  =  ( ( Im `  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  ( ( A ^
3 )  /  6
) ) ) ) )  +  ( Im
`  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) ) ) )
3511, 24crimd 11124 . . . 4  |-  ( A  e.  RR  ->  (
Im `  ( (
1  -  ( ( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  (
( A ^ 3 )  /  6 ) ) ) ) )  =  ( A  -  ( ( A ^
3 )  /  6
) ) )
3635oveq1d 5934 . . 3  |-  ( A  e.  RR  ->  (
( Im `  (
( 1  -  (
( A ^ 2 )  /  2 ) )  +  ( _i  x.  ( A  -  ( ( A ^
3 )  /  6
) ) ) ) )  +  ( Im
`  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) ) )  =  ( ( A  -  (
( A ^ 3 )  /  6 ) )  +  ( Im
`  sum_ k  e.  (
ZZ>= `  4 ) ( F `  k ) ) ) )
376, 34, 363eqtrd 2230 . 2  |-  ( A  e.  RR  ->  (
Im `  ( exp `  ( _i  x.  A
) ) )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) ) )
381, 37eqtrd 2226 1  |-  ( A  e.  RR  ->  ( sin `  A )  =  ( ( A  -  ( ( A ^
3 )  /  6
) )  +  ( Im `  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   class class class wbr 4030    |-> cmpt 4091   ` cfv 5255  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875   _ici 7876    + caddc 7877    x. cmul 7879    - cmin 8192   # cap 8602    / cdiv 8693   2c2 9035   3c3 9036   4c4 9037   6c6 9039   NN0cn0 9243   ZZ>=cuz 9595   ^cexp 10612   !cfa 10799   Imcim 10988   sum_csu 11499   expce 11788   sincsin 11790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-ico 9963  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-fac 10800  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500  df-ef 11794  df-sin 11796
This theorem is referenced by:  sin01bnd  11903
  Copyright terms: Public domain W3C validator