| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑙 = 𝑋 → (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) = (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))) | 
| 2 | 1 | breq2d 4045 | 
. . . . . . 7
⊢ (𝑙 = 𝑋 → (𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )))) | 
| 3 | 2 | abbidv 2314 | 
. . . . . 6
⊢ (𝑙 = 𝑋 → {𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}) | 
| 4 | 1 | breq1d 4043 | 
. . . . . . 7
⊢ (𝑙 = 𝑋 → ((𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞)) | 
| 5 | 4 | abbidv 2314 | 
. . . . . 6
⊢ (𝑙 = 𝑋 → {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}) | 
| 6 | 3, 5 | opeq12d 3816 | 
. . . . 5
⊢ (𝑙 = 𝑋 → 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉) | 
| 7 | 6 | breq1d 4043 | 
. . . 4
⊢ (𝑙 = 𝑋 → (〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) | 
| 8 | 7 | rexbidv 2498 | 
. . 3
⊢ (𝑙 = 𝑋 → (∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) | 
| 9 |   | caucvgprprlemell.lim | 
. . . . 5
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 | 
| 10 | 9 | fveq2i 5561 | 
. . . 4
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉) | 
| 11 |   | nqex 7430 | 
. . . . . 6
⊢
Q ∈ V | 
| 12 | 11 | rabex 4177 | 
. . . . 5
⊢ {𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} ∈ V | 
| 13 | 11 | rabex 4177 | 
. . . . 5
⊢ {𝑢 ∈ Q ∣
∃𝑟 ∈
N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉} ∈
V | 
| 14 | 12, 13 | op1st 6204 | 
. . . 4
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉) = {𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} | 
| 15 | 10, 14 | eqtri 2217 | 
. . 3
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} | 
| 16 | 8, 15 | elrab2 2923 | 
. 2
⊢ (𝑋 ∈ (1st
‘𝐿) ↔ (𝑋 ∈ Q ∧
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) | 
| 17 |   | opeq1 3808 | 
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑎 → 〈𝑟, 1o〉 = 〈𝑎,
1o〉) | 
| 18 | 17 | eceq1d 6628 | 
. . . . . . . . . . 11
⊢ (𝑟 = 𝑎 → [〈𝑟, 1o〉]
~Q = [〈𝑎, 1o〉]
~Q ) | 
| 19 | 18 | fveq2d 5562 | 
. . . . . . . . . 10
⊢ (𝑟 = 𝑎 →
(*Q‘[〈𝑟, 1o〉]
~Q ) = (*Q‘[〈𝑎, 1o〉]
~Q )) | 
| 20 | 19 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝑟 = 𝑎 → (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) = (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) | 
| 21 | 20 | breq2d 4045 | 
. . . . . . . 8
⊢ (𝑟 = 𝑎 → (𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) | 
| 22 | 21 | abbidv 2314 | 
. . . . . . 7
⊢ (𝑟 = 𝑎 → {𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}) | 
| 23 | 20 | breq1d 4043 | 
. . . . . . . 8
⊢ (𝑟 = 𝑎 → ((𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞)) | 
| 24 | 23 | abbidv 2314 | 
. . . . . . 7
⊢ (𝑟 = 𝑎 → {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}) | 
| 25 | 22, 24 | opeq12d 3816 | 
. . . . . 6
⊢ (𝑟 = 𝑎 → 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉) | 
| 26 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑟 = 𝑎 → (𝐹‘𝑟) = (𝐹‘𝑎)) | 
| 27 | 25, 26 | breq12d 4046 | 
. . . . 5
⊢ (𝑟 = 𝑎 → (〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎))) | 
| 28 | 27 | cbvrexv 2730 | 
. . . 4
⊢
(∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ ∃𝑎 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎)) | 
| 29 |   | opeq1 3808 | 
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → 〈𝑎, 1o〉 = 〈𝑏,
1o〉) | 
| 30 | 29 | eceq1d 6628 | 
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → [〈𝑎, 1o〉]
~Q = [〈𝑏, 1o〉]
~Q ) | 
| 31 | 30 | fveq2d 5562 | 
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 →
(*Q‘[〈𝑎, 1o〉]
~Q ) = (*Q‘[〈𝑏, 1o〉]
~Q )) | 
| 32 | 31 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) = (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) | 
| 33 | 32 | breq2d 4045 | 
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )))) | 
| 34 | 33 | abbidv 2314 | 
. . . . . . 7
⊢ (𝑎 = 𝑏 → {𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}) | 
| 35 | 32 | breq1d 4043 | 
. . . . . . . 8
⊢ (𝑎 = 𝑏 → ((𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞)) | 
| 36 | 35 | abbidv 2314 | 
. . . . . . 7
⊢ (𝑎 = 𝑏 → {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}) | 
| 37 | 34, 36 | opeq12d 3816 | 
. . . . . 6
⊢ (𝑎 = 𝑏 → 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉) | 
| 38 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑎 = 𝑏 → (𝐹‘𝑎) = (𝐹‘𝑏)) | 
| 39 | 37, 38 | breq12d 4046 | 
. . . . 5
⊢ (𝑎 = 𝑏 → (〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) | 
| 40 | 39 | cbvrexv 2730 | 
. . . 4
⊢
(∃𝑎 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ↔ ∃𝑏 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) | 
| 41 | 28, 40 | bitri 184 | 
. . 3
⊢
(∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ ∃𝑏 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) | 
| 42 | 41 | anbi2i 457 | 
. 2
⊢ ((𝑋 ∈ Q ∧
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)) ↔ (𝑋 ∈ Q ∧ ∃𝑏 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑋
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) | 
| 43 | 16, 42 | bitri 184 | 
1
⊢ (𝑋 ∈ (1st
‘𝐿) ↔ (𝑋 ∈ Q ∧
∃𝑏 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) |