ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemell GIF version

Theorem caucvgprprlemell 7584
Description: Lemma for caucvgprpr 7611. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.)
Hypothesis
Ref Expression
caucvgprprlemell.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemell (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
Distinct variable groups:   𝐹,𝑏   𝐹,𝑙,𝑟   𝑢,𝐹,𝑟   𝑋,𝑏,𝑝   𝑋,𝑙,𝑟,𝑝   𝑢,𝑋,𝑝   𝑋,𝑞,𝑏   𝑞,𝑙,𝑟   𝑢,𝑞
Allowed substitution hints:   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑟,𝑞,𝑝,𝑏,𝑙)

Proof of Theorem caucvgprprlemell
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5821 . . . . . . . 8 (𝑙 = 𝑋 → (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) = (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )))
21breq2d 3973 . . . . . . 7 (𝑙 = 𝑋 → (𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))))
32abbidv 2272 . . . . . 6 (𝑙 = 𝑋 → {𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))})
41breq1d 3971 . . . . . . 7 (𝑙 = 𝑋 → ((𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞))
54abbidv 2272 . . . . . 6 (𝑙 = 𝑋 → {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞})
63, 5opeq12d 3745 . . . . 5 (𝑙 = 𝑋 → ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩)
76breq1d 3971 . . . 4 (𝑙 = 𝑋 → (⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
87rexbidv 2455 . . 3 (𝑙 = 𝑋 → (∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
9 caucvgprprlemell.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
109fveq2i 5464 . . . 4 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
11 nqex 7262 . . . . . 6 Q ∈ V
1211rabex 4104 . . . . 5 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
1311rabex 4104 . . . . 5 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
1412, 13op1st 6084 . . . 4 (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
1510, 14eqtri 2175 . . 3 (1st𝐿) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
168, 15elrab2 2867 . 2 (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
17 opeq1 3737 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ⟨𝑟, 1o⟩ = ⟨𝑎, 1o⟩)
1817eceq1d 6505 . . . . . . . . . . 11 (𝑟 = 𝑎 → [⟨𝑟, 1o⟩] ~Q = [⟨𝑎, 1o⟩] ~Q )
1918fveq2d 5465 . . . . . . . . . 10 (𝑟 = 𝑎 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝑎, 1o⟩] ~Q ))
2019oveq2d 5830 . . . . . . . . 9 (𝑟 = 𝑎 → (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) = (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
2120breq2d 3973 . . . . . . . 8 (𝑟 = 𝑎 → (𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))))
2221abbidv 2272 . . . . . . 7 (𝑟 = 𝑎 → {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))})
2320breq1d 3971 . . . . . . . 8 (𝑟 = 𝑎 → ((𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞))
2423abbidv 2272 . . . . . . 7 (𝑟 = 𝑎 → {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞})
2522, 24opeq12d 3745 . . . . . 6 (𝑟 = 𝑎 → ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩)
26 fveq2 5461 . . . . . 6 (𝑟 = 𝑎 → (𝐹𝑟) = (𝐹𝑎))
2725, 26breq12d 3974 . . . . 5 (𝑟 = 𝑎 → (⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎)))
2827cbvrexv 2678 . . . 4 (∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑎N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎))
29 opeq1 3737 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ⟨𝑎, 1o⟩ = ⟨𝑏, 1o⟩)
3029eceq1d 6505 . . . . . . . . . . 11 (𝑎 = 𝑏 → [⟨𝑎, 1o⟩] ~Q = [⟨𝑏, 1o⟩] ~Q )
3130fveq2d 5465 . . . . . . . . . 10 (𝑎 = 𝑏 → (*Q‘[⟨𝑎, 1o⟩] ~Q ) = (*Q‘[⟨𝑏, 1o⟩] ~Q ))
3231oveq2d 5830 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) = (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
3332breq2d 3973 . . . . . . . 8 (𝑎 = 𝑏 → (𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))))
3433abbidv 2272 . . . . . . 7 (𝑎 = 𝑏 → {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))})
3532breq1d 3971 . . . . . . . 8 (𝑎 = 𝑏 → ((𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞))
3635abbidv 2272 . . . . . . 7 (𝑎 = 𝑏 → {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞})
3734, 36opeq12d 3745 . . . . . 6 (𝑎 = 𝑏 → ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩)
38 fveq2 5461 . . . . . 6 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
3937, 38breq12d 3974 . . . . 5 (𝑎 = 𝑏 → (⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ↔ ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
4039cbvrexv 2678 . . . 4 (∃𝑎N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ↔ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
4128, 40bitri 183 . . 3 (∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
4241anbi2i 453 . 2 ((𝑋Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
4316, 42bitri 183 1 (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1332  wcel 2125  {cab 2140  wrex 2433  {crab 2436  cop 3559   class class class wbr 3961  cfv 5163  (class class class)co 5814  1st c1st 6076  1oc1o 6346  [cec 6467  Ncnpi 7171   ~Q ceq 7178  Qcnq 7179   +Q cplq 7181  *Qcrq 7183   <Q cltq 7184   +P cpp 7192  <P cltp 7194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ov 5817  df-1st 6078  df-ec 6471  df-qs 6475  df-ni 7203  df-nqqs 7247
This theorem is referenced by:  caucvgprprlemopl  7596  caucvgprprlemlol  7597  caucvgprprlemdisj  7601  caucvgprprlemloc  7602
  Copyright terms: Public domain W3C validator