ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemell GIF version

Theorem caucvgprprlemell 7647
Description: Lemma for caucvgprpr 7674. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.)
Hypothesis
Ref Expression
caucvgprprlemell.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemell (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
Distinct variable groups:   𝐹,𝑏   𝐹,𝑙,𝑟   𝑢,𝐹,𝑟   𝑋,𝑏,𝑝   𝑋,𝑙,𝑟,𝑝   𝑢,𝑋,𝑝   𝑋,𝑞,𝑏   𝑞,𝑙,𝑟   𝑢,𝑞
Allowed substitution hints:   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑟,𝑞,𝑝,𝑏,𝑙)

Proof of Theorem caucvgprprlemell
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5860 . . . . . . . 8 (𝑙 = 𝑋 → (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) = (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )))
21breq2d 4001 . . . . . . 7 (𝑙 = 𝑋 → (𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))))
32abbidv 2288 . . . . . 6 (𝑙 = 𝑋 → {𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))})
41breq1d 3999 . . . . . . 7 (𝑙 = 𝑋 → ((𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞))
54abbidv 2288 . . . . . 6 (𝑙 = 𝑋 → {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞})
63, 5opeq12d 3773 . . . . 5 (𝑙 = 𝑋 → ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩)
76breq1d 3999 . . . 4 (𝑙 = 𝑋 → (⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
87rexbidv 2471 . . 3 (𝑙 = 𝑋 → (∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
9 caucvgprprlemell.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
109fveq2i 5499 . . . 4 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
11 nqex 7325 . . . . . 6 Q ∈ V
1211rabex 4133 . . . . 5 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
1311rabex 4133 . . . . 5 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
1412, 13op1st 6125 . . . 4 (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
1510, 14eqtri 2191 . . 3 (1st𝐿) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
168, 15elrab2 2889 . 2 (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
17 opeq1 3765 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ⟨𝑟, 1o⟩ = ⟨𝑎, 1o⟩)
1817eceq1d 6549 . . . . . . . . . . 11 (𝑟 = 𝑎 → [⟨𝑟, 1o⟩] ~Q = [⟨𝑎, 1o⟩] ~Q )
1918fveq2d 5500 . . . . . . . . . 10 (𝑟 = 𝑎 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝑎, 1o⟩] ~Q ))
2019oveq2d 5869 . . . . . . . . 9 (𝑟 = 𝑎 → (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) = (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
2120breq2d 4001 . . . . . . . 8 (𝑟 = 𝑎 → (𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))))
2221abbidv 2288 . . . . . . 7 (𝑟 = 𝑎 → {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))})
2320breq1d 3999 . . . . . . . 8 (𝑟 = 𝑎 → ((𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞))
2423abbidv 2288 . . . . . . 7 (𝑟 = 𝑎 → {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞})
2522, 24opeq12d 3773 . . . . . 6 (𝑟 = 𝑎 → ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩)
26 fveq2 5496 . . . . . 6 (𝑟 = 𝑎 → (𝐹𝑟) = (𝐹𝑎))
2725, 26breq12d 4002 . . . . 5 (𝑟 = 𝑎 → (⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎)))
2827cbvrexv 2697 . . . 4 (∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑎N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎))
29 opeq1 3765 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ⟨𝑎, 1o⟩ = ⟨𝑏, 1o⟩)
3029eceq1d 6549 . . . . . . . . . . 11 (𝑎 = 𝑏 → [⟨𝑎, 1o⟩] ~Q = [⟨𝑏, 1o⟩] ~Q )
3130fveq2d 5500 . . . . . . . . . 10 (𝑎 = 𝑏 → (*Q‘[⟨𝑎, 1o⟩] ~Q ) = (*Q‘[⟨𝑏, 1o⟩] ~Q ))
3231oveq2d 5869 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) = (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
3332breq2d 4001 . . . . . . . 8 (𝑎 = 𝑏 → (𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))))
3433abbidv 2288 . . . . . . 7 (𝑎 = 𝑏 → {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))})
3532breq1d 3999 . . . . . . . 8 (𝑎 = 𝑏 → ((𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞))
3635abbidv 2288 . . . . . . 7 (𝑎 = 𝑏 → {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞})
3734, 36opeq12d 3773 . . . . . 6 (𝑎 = 𝑏 → ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩)
38 fveq2 5496 . . . . . 6 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
3937, 38breq12d 4002 . . . . 5 (𝑎 = 𝑏 → (⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ↔ ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
4039cbvrexv 2697 . . . 4 (∃𝑎N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ↔ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
4128, 40bitri 183 . . 3 (∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
4241anbi2i 454 . 2 ((𝑋Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
4316, 42bitri 183 1 (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1348  wcel 2141  {cab 2156  wrex 2449  {crab 2452  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  1st c1st 6117  1oc1o 6388  [cec 6511  Ncnpi 7234   ~Q ceq 7241  Qcnq 7242   +Q cplq 7244  *Qcrq 7246   <Q cltq 7247   +P cpp 7255  <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-1st 6119  df-ec 6515  df-qs 6519  df-ni 7266  df-nqqs 7310
This theorem is referenced by:  caucvgprprlemopl  7659  caucvgprprlemlol  7660  caucvgprprlemdisj  7664  caucvgprprlemloc  7665
  Copyright terms: Public domain W3C validator