Step | Hyp | Ref
| Expression |
1 | | oveq1 5860 |
. . . . . . . 8
⊢ (𝑙 = 𝑋 → (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) = (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))) |
2 | 1 | breq2d 4001 |
. . . . . . 7
⊢ (𝑙 = 𝑋 → (𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )))) |
3 | 2 | abbidv 2288 |
. . . . . 6
⊢ (𝑙 = 𝑋 → {𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}) |
4 | 1 | breq1d 3999 |
. . . . . . 7
⊢ (𝑙 = 𝑋 → ((𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞)) |
5 | 4 | abbidv 2288 |
. . . . . 6
⊢ (𝑙 = 𝑋 → {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}) |
6 | 3, 5 | opeq12d 3773 |
. . . . 5
⊢ (𝑙 = 𝑋 → 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉) |
7 | 6 | breq1d 3999 |
. . . 4
⊢ (𝑙 = 𝑋 → (〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) |
8 | 7 | rexbidv 2471 |
. . 3
⊢ (𝑙 = 𝑋 → (∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ ∃𝑟 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) |
9 | | caucvgprprlemell.lim |
. . . . 5
⊢ 𝐿 = 〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉 |
10 | 9 | fveq2i 5499 |
. . . 4
⊢
(1st ‘𝐿) = (1st ‘〈{𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉) |
11 | | nqex 7325 |
. . . . . 6
⊢
Q ∈ V |
12 | 11 | rabex 4133 |
. . . . 5
⊢ {𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} ∈ V |
13 | 11 | rabex 4133 |
. . . . 5
⊢ {𝑢 ∈ Q ∣
∃𝑟 ∈
N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉} ∈
V |
14 | 12, 13 | op1st 6125 |
. . . 4
⊢
(1st ‘〈{𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)}, {𝑢 ∈ Q ∣ ∃𝑟 ∈ N ((𝐹‘𝑟) +P 〈{𝑝 ∣ 𝑝 <Q
(*Q‘[〈𝑟, 1o〉]
~Q )}, {𝑞 ∣
(*Q‘[〈𝑟, 1o〉]
~Q ) <Q 𝑞}〉)<P
〈{𝑝 ∣ 𝑝 <Q
𝑢}, {𝑞 ∣ 𝑢 <Q 𝑞}〉}〉) = {𝑙 ∈ Q ∣
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} |
15 | 10, 14 | eqtri 2191 |
. . 3
⊢
(1st ‘𝐿) = {𝑙 ∈ Q ∣ ∃𝑟 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑙
+Q (*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑙 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)} |
16 | 8, 15 | elrab2 2889 |
. 2
⊢ (𝑋 ∈ (1st
‘𝐿) ↔ (𝑋 ∈ Q ∧
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟))) |
17 | | opeq1 3765 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑎 → 〈𝑟, 1o〉 = 〈𝑎,
1o〉) |
18 | 17 | eceq1d 6549 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑎 → [〈𝑟, 1o〉]
~Q = [〈𝑎, 1o〉]
~Q ) |
19 | 18 | fveq2d 5500 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑎 →
(*Q‘[〈𝑟, 1o〉]
~Q ) = (*Q‘[〈𝑎, 1o〉]
~Q )) |
20 | 19 | oveq2d 5869 |
. . . . . . . . 9
⊢ (𝑟 = 𝑎 → (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) = (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))) |
21 | 20 | breq2d 4001 |
. . . . . . . 8
⊢ (𝑟 = 𝑎 → (𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )))) |
22 | 21 | abbidv 2288 |
. . . . . . 7
⊢ (𝑟 = 𝑎 → {𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}) |
23 | 20 | breq1d 3999 |
. . . . . . . 8
⊢ (𝑟 = 𝑎 → ((𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞)) |
24 | 23 | abbidv 2288 |
. . . . . . 7
⊢ (𝑟 = 𝑎 → {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}) |
25 | 22, 24 | opeq12d 3773 |
. . . . . 6
⊢ (𝑟 = 𝑎 → 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉) |
26 | | fveq2 5496 |
. . . . . 6
⊢ (𝑟 = 𝑎 → (𝐹‘𝑟) = (𝐹‘𝑎)) |
27 | 25, 26 | breq12d 4002 |
. . . . 5
⊢ (𝑟 = 𝑎 → (〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎))) |
28 | 27 | cbvrexv 2697 |
. . . 4
⊢
(∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ ∃𝑎 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎)) |
29 | | opeq1 3765 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑏 → 〈𝑎, 1o〉 = 〈𝑏,
1o〉) |
30 | 29 | eceq1d 6549 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑏 → [〈𝑎, 1o〉]
~Q = [〈𝑏, 1o〉]
~Q ) |
31 | 30 | fveq2d 5500 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 →
(*Q‘[〈𝑎, 1o〉]
~Q ) = (*Q‘[〈𝑏, 1o〉]
~Q )) |
32 | 31 | oveq2d 5869 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) = (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))) |
33 | 32 | breq2d 4001 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) ↔ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )))) |
34 | 33 | abbidv 2288 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → {𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))} = {𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}) |
35 | 32 | breq1d 3999 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → ((𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞 ↔ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞)) |
36 | 35 | abbidv 2288 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}) |
37 | 34, 36 | opeq12d 3773 |
. . . . . 6
⊢ (𝑎 = 𝑏 → 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉 = 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉) |
38 | | fveq2 5496 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (𝐹‘𝑎) = (𝐹‘𝑏)) |
39 | 37, 38 | breq12d 4002 |
. . . . 5
⊢ (𝑎 = 𝑏 → (〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ↔ 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) |
40 | 39 | cbvrexv 2697 |
. . . 4
⊢
(∃𝑎 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑎, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑎) ↔ ∃𝑏 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) |
41 | 28, 40 | bitri 183 |
. . 3
⊢
(∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟) ↔ ∃𝑏 ∈ N 〈{𝑝 ∣ 𝑝 <Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏)) |
42 | 41 | anbi2i 454 |
. 2
⊢ ((𝑋 ∈ Q ∧
∃𝑟 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑟, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑟)) ↔ (𝑋 ∈ Q ∧ ∃𝑏 ∈ N
〈{𝑝 ∣ 𝑝 <Q
(𝑋
+Q (*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) |
43 | 16, 42 | bitri 183 |
1
⊢ (𝑋 ∈ (1st
‘𝐿) ↔ (𝑋 ∈ Q ∧
∃𝑏 ∈
N 〈{𝑝
∣ 𝑝
<Q (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q ))}, {𝑞 ∣ (𝑋 +Q
(*Q‘[〈𝑏, 1o〉]
~Q )) <Q 𝑞}〉<P (𝐹‘𝑏))) |