ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemell GIF version

Theorem caucvgprprlemell 7675
Description: Lemma for caucvgprpr 7702. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.)
Hypothesis
Ref Expression
caucvgprprlemell.lim 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
Assertion
Ref Expression
caucvgprprlemell (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
Distinct variable groups:   𝐹,𝑏   𝐹,𝑙,𝑟   𝑢,𝐹,𝑟   𝑋,𝑏,𝑝   𝑋,𝑙,𝑟,𝑝   𝑢,𝑋,𝑝   𝑋,𝑞,𝑏   𝑞,𝑙,𝑟   𝑢,𝑞
Allowed substitution hints:   𝐹(𝑞,𝑝)   𝐿(𝑢,𝑟,𝑞,𝑝,𝑏,𝑙)

Proof of Theorem caucvgprprlemell
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5876 . . . . . . . 8 (𝑙 = 𝑋 → (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) = (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )))
21breq2d 4012 . . . . . . 7 (𝑙 = 𝑋 → (𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))))
32abbidv 2295 . . . . . 6 (𝑙 = 𝑋 → {𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))})
41breq1d 4010 . . . . . . 7 (𝑙 = 𝑋 → ((𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞))
54abbidv 2295 . . . . . 6 (𝑙 = 𝑋 → {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞})
63, 5opeq12d 3784 . . . . 5 (𝑙 = 𝑋 → ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩)
76breq1d 4010 . . . 4 (𝑙 = 𝑋 → (⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
87rexbidv 2478 . . 3 (𝑙 = 𝑋 → (∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
9 caucvgprprlemell.lim . . . . 5 𝐿 = ⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩
109fveq2i 5514 . . . 4 (1st𝐿) = (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩)
11 nqex 7353 . . . . . 6 Q ∈ V
1211rabex 4144 . . . . 5 {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)} ∈ V
1311rabex 4144 . . . . 5 {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩} ∈ V
1412, 13op1st 6141 . . . 4 (1st ‘⟨{𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}, {𝑢Q ∣ ∃𝑟N ((𝐹𝑟) +P ⟨{𝑝𝑝 <Q (*Q‘[⟨𝑟, 1o⟩] ~Q )}, {𝑞 ∣ (*Q‘[⟨𝑟, 1o⟩] ~Q ) <Q 𝑞}⟩)<P ⟨{𝑝𝑝 <Q 𝑢}, {𝑞𝑢 <Q 𝑞}⟩}⟩) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
1510, 14eqtri 2198 . . 3 (1st𝐿) = {𝑙Q ∣ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑙 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)}
168, 15elrab2 2896 . 2 (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)))
17 opeq1 3776 . . . . . . . . . . . 12 (𝑟 = 𝑎 → ⟨𝑟, 1o⟩ = ⟨𝑎, 1o⟩)
1817eceq1d 6565 . . . . . . . . . . 11 (𝑟 = 𝑎 → [⟨𝑟, 1o⟩] ~Q = [⟨𝑎, 1o⟩] ~Q )
1918fveq2d 5515 . . . . . . . . . 10 (𝑟 = 𝑎 → (*Q‘[⟨𝑟, 1o⟩] ~Q ) = (*Q‘[⟨𝑎, 1o⟩] ~Q ))
2019oveq2d 5885 . . . . . . . . 9 (𝑟 = 𝑎 → (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) = (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )))
2120breq2d 4012 . . . . . . . 8 (𝑟 = 𝑎 → (𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))))
2221abbidv 2295 . . . . . . 7 (𝑟 = 𝑎 → {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))})
2320breq1d 4010 . . . . . . . 8 (𝑟 = 𝑎 → ((𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞))
2423abbidv 2295 . . . . . . 7 (𝑟 = 𝑎 → {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞})
2522, 24opeq12d 3784 . . . . . 6 (𝑟 = 𝑎 → ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩)
26 fveq2 5511 . . . . . 6 (𝑟 = 𝑎 → (𝐹𝑟) = (𝐹𝑎))
2725, 26breq12d 4013 . . . . 5 (𝑟 = 𝑎 → (⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎)))
2827cbvrexv 2704 . . . 4 (∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑎N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎))
29 opeq1 3776 . . . . . . . . . . . 12 (𝑎 = 𝑏 → ⟨𝑎, 1o⟩ = ⟨𝑏, 1o⟩)
3029eceq1d 6565 . . . . . . . . . . 11 (𝑎 = 𝑏 → [⟨𝑎, 1o⟩] ~Q = [⟨𝑏, 1o⟩] ~Q )
3130fveq2d 5515 . . . . . . . . . 10 (𝑎 = 𝑏 → (*Q‘[⟨𝑎, 1o⟩] ~Q ) = (*Q‘[⟨𝑏, 1o⟩] ~Q ))
3231oveq2d 5885 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) = (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )))
3332breq2d 4012 . . . . . . . 8 (𝑎 = 𝑏 → (𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) ↔ 𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))))
3433abbidv 2295 . . . . . . 7 (𝑎 = 𝑏 → {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))} = {𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))})
3532breq1d 4010 . . . . . . . 8 (𝑎 = 𝑏 → ((𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞 ↔ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞))
3635abbidv 2295 . . . . . . 7 (𝑎 = 𝑏 → {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞} = {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞})
3734, 36opeq12d 3784 . . . . . 6 (𝑎 = 𝑏 → ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩ = ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩)
38 fveq2 5511 . . . . . 6 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
3937, 38breq12d 4013 . . . . 5 (𝑎 = 𝑏 → (⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ↔ ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
4039cbvrexv 2704 . . . 4 (∃𝑎N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑎, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑎) ↔ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
4128, 40bitri 184 . . 3 (∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟) ↔ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏))
4241anbi2i 457 . 2 ((𝑋Q ∧ ∃𝑟N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑟, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑟)) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
4316, 42bitri 184 1 (𝑋 ∈ (1st𝐿) ↔ (𝑋Q ∧ ∃𝑏N ⟨{𝑝𝑝 <Q (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q ))}, {𝑞 ∣ (𝑋 +Q (*Q‘[⟨𝑏, 1o⟩] ~Q )) <Q 𝑞}⟩<P (𝐹𝑏)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1353  wcel 2148  {cab 2163  wrex 2456  {crab 2459  cop 3594   class class class wbr 4000  cfv 5212  (class class class)co 5869  1st c1st 6133  1oc1o 6404  [cec 6527  Ncnpi 7262   ~Q ceq 7269  Qcnq 7270   +Q cplq 7272  *Qcrq 7274   <Q cltq 7275   +P cpp 7283  <P cltp 7285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-1st 6135  df-ec 6531  df-qs 6535  df-ni 7294  df-nqqs 7338
This theorem is referenced by:  caucvgprprlemopl  7687  caucvgprprlemlol  7688  caucvgprprlemdisj  7692  caucvgprprlemloc  7693
  Copyright terms: Public domain W3C validator