ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemloccalc Unicode version

Theorem caucvgprprlemloccalc 7646
Description: Lemma for caucvgprpr 7674. Rearranging some expressions for caucvgprprlemloc 7665. (Contributed by Jim Kingdon, 8-Feb-2021.)
Hypotheses
Ref Expression
caucvgprprlemloccalc.st  |-  ( ph  ->  S  <Q  T )
caucvgprprlemloccalc.y  |-  ( ph  ->  Y  e.  Q. )
caucvgprprlemloccalc.syt  |-  ( ph  ->  ( S  +Q  Y
)  =  T )
caucvgprprlemloccalc.x  |-  ( ph  ->  X  e.  Q. )
caucvgprprlemloccalc.xxy  |-  ( ph  ->  ( X  +Q  X
)  <Q  Y )
caucvgprprlemloccalc.m  |-  ( ph  ->  M  e.  N. )
caucvgprprlemloccalc.mx  |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )
Assertion
Ref Expression
caucvgprprlemloccalc  |-  ( ph  ->  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )  <P 
<. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
Distinct variable groups:    M, l, u    S, l, u    T, l, u
Allowed substitution hints:    ph( u, l)    X( u, l)    Y( u, l)

Proof of Theorem caucvgprprlemloccalc
StepHypRef Expression
1 caucvgprprlemloccalc.st . . . . . 6  |-  ( ph  ->  S  <Q  T )
2 ltrelnq 7327 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4663 . . . . . 6  |-  ( S 
<Q  T  ->  ( S  e.  Q.  /\  T  e.  Q. ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  ( S  e.  Q.  /\  T  e.  Q. )
)
54simpld 111 . . . 4  |-  ( ph  ->  S  e.  Q. )
6 caucvgprprlemloccalc.m . . . . 5  |-  ( ph  ->  M  e.  N. )
7 nnnq 7384 . . . . 5  |-  ( M  e.  N.  ->  [ <. M ,  1o >. ]  ~Q  e.  Q. )
8 recclnq 7354 . . . . 5  |-  ( [
<. M ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )
96, 7, 83syl 17 . . . 4  |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )
10 addclnq 7337 . . . 4  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  e.  Q. )
115, 9, 10syl2anc 409 . . 3  |-  ( ph  ->  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  e.  Q. )
12 addnqpr 7523 . . 3  |-  ( ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )  -> 
<. { l  |  l 
<Q  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )
)
1311, 9, 12syl2anc 409 . 2  |-  ( ph  -> 
<. { l  |  l 
<Q  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )
)
14 addassnqg 7344 . . . . 5  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )  ->  (
( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  =  ( S  +Q  ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) ) )
155, 9, 9, 14syl3anc 1233 . . . 4  |-  ( ph  ->  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  =  ( S  +Q  ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) ) )
16 caucvgprprlemloccalc.mx . . . . . . . 8  |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )
17 caucvgprprlemloccalc.x . . . . . . . . 9  |-  ( ph  ->  X  e.  Q. )
18 lt2addnq 7366 . . . . . . . . 9  |-  ( ( ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e. 
Q.  /\  X  e.  Q. )  /\  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q.  /\  X  e.  Q. )
)  ->  ( (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )  -> 
( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q 
( X  +Q  X
) ) )
199, 17, 9, 17, 18syl22anc 1234 . . . . . . . 8  |-  ( ph  ->  ( ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  <Q  X  /\  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  <Q  X )  ->  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  ( X  +Q  X ) ) )
2016, 16, 19mp2and 431 . . . . . . 7  |-  ( ph  ->  ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q 
( X  +Q  X
) )
21 caucvgprprlemloccalc.xxy . . . . . . 7  |-  ( ph  ->  ( X  +Q  X
)  <Q  Y )
22 ltsonq 7360 . . . . . . . 8  |-  <Q  Or  Q.
2322, 2sotri 5006 . . . . . . 7  |-  ( ( ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q 
( X  +Q  X
)  /\  ( X  +Q  X )  <Q  Y )  ->  ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  Y )
2420, 21, 23syl2anc 409 . . . . . 6  |-  ( ph  ->  ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  Y )
25 ltanqi 7364 . . . . . 6  |-  ( ( ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  Y  /\  S  e.  Q. )  ->  ( S  +Q  ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) ) 
<Q  ( S  +Q  Y
) )
2624, 5, 25syl2anc 409 . . . . 5  |-  ( ph  ->  ( S  +Q  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) )  <Q  ( S  +Q  Y ) )
27 caucvgprprlemloccalc.syt . . . . 5  |-  ( ph  ->  ( S  +Q  Y
)  =  T )
2826, 27breqtrd 4015 . . . 4  |-  ( ph  ->  ( S  +Q  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) )  <Q  T )
2915, 28eqbrtrd 4011 . . 3  |-  ( ph  ->  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  T )
30 ltnqpri 7556 . . 3  |-  ( ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  T  ->  <. { l  |  l  <Q  (
( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
3129, 30syl 14 . 2  |-  ( ph  -> 
<. { l  |  l 
<Q  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
3213, 31eqbrtrrd 4013 1  |-  ( ph  ->  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )  <P 
<. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   <.cop 3586   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   1oc1o 6388   [cec 6511   N.cnpi 7234    ~Q ceq 7241   Q.cnq 7242    +Q cplq 7244   *Qcrq 7246    <Q cltq 7247    +P. cpp 7255    <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-iltp 7432
This theorem is referenced by:  caucvgprprlemloc  7665
  Copyright terms: Public domain W3C validator