ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemloccalc Unicode version

Theorem caucvgprprlemloccalc 7797
Description: Lemma for caucvgprpr 7825. Rearranging some expressions for caucvgprprlemloc 7816. (Contributed by Jim Kingdon, 8-Feb-2021.)
Hypotheses
Ref Expression
caucvgprprlemloccalc.st  |-  ( ph  ->  S  <Q  T )
caucvgprprlemloccalc.y  |-  ( ph  ->  Y  e.  Q. )
caucvgprprlemloccalc.syt  |-  ( ph  ->  ( S  +Q  Y
)  =  T )
caucvgprprlemloccalc.x  |-  ( ph  ->  X  e.  Q. )
caucvgprprlemloccalc.xxy  |-  ( ph  ->  ( X  +Q  X
)  <Q  Y )
caucvgprprlemloccalc.m  |-  ( ph  ->  M  e.  N. )
caucvgprprlemloccalc.mx  |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )
Assertion
Ref Expression
caucvgprprlemloccalc  |-  ( ph  ->  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )  <P 
<. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
Distinct variable groups:    M, l, u    S, l, u    T, l, u
Allowed substitution hints:    ph( u, l)    X( u, l)    Y( u, l)

Proof of Theorem caucvgprprlemloccalc
StepHypRef Expression
1 caucvgprprlemloccalc.st . . . . . 6  |-  ( ph  ->  S  <Q  T )
2 ltrelnq 7478 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4727 . . . . . 6  |-  ( S 
<Q  T  ->  ( S  e.  Q.  /\  T  e.  Q. ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  ( S  e.  Q.  /\  T  e.  Q. )
)
54simpld 112 . . . 4  |-  ( ph  ->  S  e.  Q. )
6 caucvgprprlemloccalc.m . . . . 5  |-  ( ph  ->  M  e.  N. )
7 nnnq 7535 . . . . 5  |-  ( M  e.  N.  ->  [ <. M ,  1o >. ]  ~Q  e.  Q. )
8 recclnq 7505 . . . . 5  |-  ( [
<. M ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )
96, 7, 83syl 17 . . . 4  |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )
10 addclnq 7488 . . . 4  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  e.  Q. )
115, 9, 10syl2anc 411 . . 3  |-  ( ph  ->  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  e.  Q. )
12 addnqpr 7674 . . 3  |-  ( ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )  -> 
<. { l  |  l 
<Q  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )
)
1311, 9, 12syl2anc 411 . 2  |-  ( ph  -> 
<. { l  |  l 
<Q  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )
)
14 addassnqg 7495 . . . . 5  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )  ->  (
( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  =  ( S  +Q  ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) ) )
155, 9, 9, 14syl3anc 1250 . . . 4  |-  ( ph  ->  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  =  ( S  +Q  ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) ) )
16 caucvgprprlemloccalc.mx . . . . . . . 8  |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )
17 caucvgprprlemloccalc.x . . . . . . . . 9  |-  ( ph  ->  X  e.  Q. )
18 lt2addnq 7517 . . . . . . . . 9  |-  ( ( ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e. 
Q.  /\  X  e.  Q. )  /\  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q.  /\  X  e.  Q. )
)  ->  ( (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )  -> 
( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q 
( X  +Q  X
) ) )
199, 17, 9, 17, 18syl22anc 1251 . . . . . . . 8  |-  ( ph  ->  ( ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  <Q  X  /\  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  <Q  X )  ->  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  ( X  +Q  X ) ) )
2016, 16, 19mp2and 433 . . . . . . 7  |-  ( ph  ->  ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q 
( X  +Q  X
) )
21 caucvgprprlemloccalc.xxy . . . . . . 7  |-  ( ph  ->  ( X  +Q  X
)  <Q  Y )
22 ltsonq 7511 . . . . . . . 8  |-  <Q  Or  Q.
2322, 2sotri 5078 . . . . . . 7  |-  ( ( ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q 
( X  +Q  X
)  /\  ( X  +Q  X )  <Q  Y )  ->  ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  Y )
2420, 21, 23syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  Y )
25 ltanqi 7515 . . . . . 6  |-  ( ( ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  Y  /\  S  e.  Q. )  ->  ( S  +Q  ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) ) 
<Q  ( S  +Q  Y
) )
2624, 5, 25syl2anc 411 . . . . 5  |-  ( ph  ->  ( S  +Q  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) )  <Q  ( S  +Q  Y ) )
27 caucvgprprlemloccalc.syt . . . . 5  |-  ( ph  ->  ( S  +Q  Y
)  =  T )
2826, 27breqtrd 4070 . . . 4  |-  ( ph  ->  ( S  +Q  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) )  <Q  T )
2915, 28eqbrtrd 4066 . . 3  |-  ( ph  ->  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  T )
30 ltnqpri 7707 . . 3  |-  ( ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  T  ->  <. { l  |  l  <Q  (
( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
3129, 30syl 14 . 2  |-  ( ph  -> 
<. { l  |  l 
<Q  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
3213, 31eqbrtrrd 4068 1  |-  ( ph  ->  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )  <P 
<. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {cab 2191   <.cop 3636   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   1oc1o 6495   [cec 6618   N.cnpi 7385    ~Q ceq 7392   Q.cnq 7393    +Q cplq 7395   *Qcrq 7397    <Q cltq 7398    +P. cpp 7406    <P cltp 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-iplp 7581  df-iltp 7583
This theorem is referenced by:  caucvgprprlemloc  7816
  Copyright terms: Public domain W3C validator