ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemloccalc Unicode version

Theorem caucvgprprlemloccalc 7871
Description: Lemma for caucvgprpr 7899. Rearranging some expressions for caucvgprprlemloc 7890. (Contributed by Jim Kingdon, 8-Feb-2021.)
Hypotheses
Ref Expression
caucvgprprlemloccalc.st  |-  ( ph  ->  S  <Q  T )
caucvgprprlemloccalc.y  |-  ( ph  ->  Y  e.  Q. )
caucvgprprlemloccalc.syt  |-  ( ph  ->  ( S  +Q  Y
)  =  T )
caucvgprprlemloccalc.x  |-  ( ph  ->  X  e.  Q. )
caucvgprprlemloccalc.xxy  |-  ( ph  ->  ( X  +Q  X
)  <Q  Y )
caucvgprprlemloccalc.m  |-  ( ph  ->  M  e.  N. )
caucvgprprlemloccalc.mx  |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )
Assertion
Ref Expression
caucvgprprlemloccalc  |-  ( ph  ->  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )  <P 
<. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
Distinct variable groups:    M, l, u    S, l, u    T, l, u
Allowed substitution hints:    ph( u, l)    X( u, l)    Y( u, l)

Proof of Theorem caucvgprprlemloccalc
StepHypRef Expression
1 caucvgprprlemloccalc.st . . . . . 6  |-  ( ph  ->  S  <Q  T )
2 ltrelnq 7552 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4771 . . . . . 6  |-  ( S 
<Q  T  ->  ( S  e.  Q.  /\  T  e.  Q. ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  ( S  e.  Q.  /\  T  e.  Q. )
)
54simpld 112 . . . 4  |-  ( ph  ->  S  e.  Q. )
6 caucvgprprlemloccalc.m . . . . 5  |-  ( ph  ->  M  e.  N. )
7 nnnq 7609 . . . . 5  |-  ( M  e.  N.  ->  [ <. M ,  1o >. ]  ~Q  e.  Q. )
8 recclnq 7579 . . . . 5  |-  ( [
<. M ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )
96, 7, 83syl 17 . . . 4  |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )
10 addclnq 7562 . . . 4  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  e.  Q. )
115, 9, 10syl2anc 411 . . 3  |-  ( ph  ->  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  e.  Q. )
12 addnqpr 7748 . . 3  |-  ( ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )  -> 
<. { l  |  l 
<Q  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )
)
1311, 9, 12syl2anc 411 . 2  |-  ( ph  -> 
<. { l  |  l 
<Q  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )
)
14 addassnqg 7569 . . . . 5  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )  ->  (
( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  =  ( S  +Q  ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) ) )
155, 9, 9, 14syl3anc 1271 . . . 4  |-  ( ph  ->  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  =  ( S  +Q  ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) ) )
16 caucvgprprlemloccalc.mx . . . . . . . 8  |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )
17 caucvgprprlemloccalc.x . . . . . . . . 9  |-  ( ph  ->  X  e.  Q. )
18 lt2addnq 7591 . . . . . . . . 9  |-  ( ( ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e. 
Q.  /\  X  e.  Q. )  /\  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q.  /\  X  e.  Q. )
)  ->  ( (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )  -> 
( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q 
( X  +Q  X
) ) )
199, 17, 9, 17, 18syl22anc 1272 . . . . . . . 8  |-  ( ph  ->  ( ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  <Q  X  /\  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  <Q  X )  ->  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  ( X  +Q  X ) ) )
2016, 16, 19mp2and 433 . . . . . . 7  |-  ( ph  ->  ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q 
( X  +Q  X
) )
21 caucvgprprlemloccalc.xxy . . . . . . 7  |-  ( ph  ->  ( X  +Q  X
)  <Q  Y )
22 ltsonq 7585 . . . . . . . 8  |-  <Q  Or  Q.
2322, 2sotri 5124 . . . . . . 7  |-  ( ( ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q 
( X  +Q  X
)  /\  ( X  +Q  X )  <Q  Y )  ->  ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  Y )
2420, 21, 23syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  Y )
25 ltanqi 7589 . . . . . 6  |-  ( ( ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  Y  /\  S  e.  Q. )  ->  ( S  +Q  ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) ) 
<Q  ( S  +Q  Y
) )
2624, 5, 25syl2anc 411 . . . . 5  |-  ( ph  ->  ( S  +Q  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) )  <Q  ( S  +Q  Y ) )
27 caucvgprprlemloccalc.syt . . . . 5  |-  ( ph  ->  ( S  +Q  Y
)  =  T )
2826, 27breqtrd 4109 . . . 4  |-  ( ph  ->  ( S  +Q  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) )  <Q  T )
2915, 28eqbrtrd 4105 . . 3  |-  ( ph  ->  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  T )
30 ltnqpri 7781 . . 3  |-  ( ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  T  ->  <. { l  |  l  <Q  (
( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
3129, 30syl 14 . 2  |-  ( ph  -> 
<. { l  |  l 
<Q  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
3213, 31eqbrtrrd 4107 1  |-  ( ph  ->  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )  <P 
<. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {cab 2215   <.cop 3669   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   1oc1o 6555   [cec 6678   N.cnpi 7459    ~Q ceq 7466   Q.cnq 7467    +Q cplq 7469   *Qcrq 7471    <Q cltq 7472    +P. cpp 7480    <P cltp 7482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-iplp 7655  df-iltp 7657
This theorem is referenced by:  caucvgprprlemloc  7890
  Copyright terms: Public domain W3C validator