ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemloccalc Unicode version

Theorem caucvgprprlemloccalc 7625
Description: Lemma for caucvgprpr 7653. Rearranging some expressions for caucvgprprlemloc 7644. (Contributed by Jim Kingdon, 8-Feb-2021.)
Hypotheses
Ref Expression
caucvgprprlemloccalc.st  |-  ( ph  ->  S  <Q  T )
caucvgprprlemloccalc.y  |-  ( ph  ->  Y  e.  Q. )
caucvgprprlemloccalc.syt  |-  ( ph  ->  ( S  +Q  Y
)  =  T )
caucvgprprlemloccalc.x  |-  ( ph  ->  X  e.  Q. )
caucvgprprlemloccalc.xxy  |-  ( ph  ->  ( X  +Q  X
)  <Q  Y )
caucvgprprlemloccalc.m  |-  ( ph  ->  M  e.  N. )
caucvgprprlemloccalc.mx  |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )
Assertion
Ref Expression
caucvgprprlemloccalc  |-  ( ph  ->  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )  <P 
<. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
Distinct variable groups:    M, l, u    S, l, u    T, l, u
Allowed substitution hints:    ph( u, l)    X( u, l)    Y( u, l)

Proof of Theorem caucvgprprlemloccalc
StepHypRef Expression
1 caucvgprprlemloccalc.st . . . . . 6  |-  ( ph  ->  S  <Q  T )
2 ltrelnq 7306 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
32brel 4656 . . . . . 6  |-  ( S 
<Q  T  ->  ( S  e.  Q.  /\  T  e.  Q. ) )
41, 3syl 14 . . . . 5  |-  ( ph  ->  ( S  e.  Q.  /\  T  e.  Q. )
)
54simpld 111 . . . 4  |-  ( ph  ->  S  e.  Q. )
6 caucvgprprlemloccalc.m . . . . 5  |-  ( ph  ->  M  e.  N. )
7 nnnq 7363 . . . . 5  |-  ( M  e.  N.  ->  [ <. M ,  1o >. ]  ~Q  e.  Q. )
8 recclnq 7333 . . . . 5  |-  ( [
<. M ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )
96, 7, 83syl 17 . . . 4  |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )
10 addclnq 7316 . . . 4  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  e.  Q. )
115, 9, 10syl2anc 409 . . 3  |-  ( ph  ->  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  e.  Q. )
12 addnqpr 7502 . . 3  |-  ( ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )  -> 
<. { l  |  l 
<Q  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )
)
1311, 9, 12syl2anc 409 . 2  |-  ( ph  -> 
<. { l  |  l 
<Q  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  =  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )
)
14 addassnqg 7323 . . . . 5  |-  ( ( S  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q.  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q. )  ->  (
( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  =  ( S  +Q  ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) ) )
155, 9, 9, 14syl3anc 1228 . . . 4  |-  ( ph  ->  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  =  ( S  +Q  ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) ) )
16 caucvgprprlemloccalc.mx . . . . . . . 8  |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )
17 caucvgprprlemloccalc.x . . . . . . . . 9  |-  ( ph  ->  X  e.  Q. )
18 lt2addnq 7345 . . . . . . . . 9  |-  ( ( ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  e. 
Q.  /\  X  e.  Q. )  /\  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  e.  Q.  /\  X  e.  Q. )
)  ->  ( (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X  /\  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )  -> 
( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q 
( X  +Q  X
) ) )
199, 17, 9, 17, 18syl22anc 1229 . . . . . . . 8  |-  ( ph  ->  ( ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  <Q  X  /\  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  <Q  X )  ->  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  ( X  +Q  X ) ) )
2016, 16, 19mp2and 430 . . . . . . 7  |-  ( ph  ->  ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q 
( X  +Q  X
) )
21 caucvgprprlemloccalc.xxy . . . . . . 7  |-  ( ph  ->  ( X  +Q  X
)  <Q  Y )
22 ltsonq 7339 . . . . . . . 8  |-  <Q  Or  Q.
2322, 2sotri 4999 . . . . . . 7  |-  ( ( ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q 
( X  +Q  X
)  /\  ( X  +Q  X )  <Q  Y )  ->  ( ( *Q
`  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  Y )
2420, 21, 23syl2anc 409 . . . . . 6  |-  ( ph  ->  ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  Y )
25 ltanqi 7343 . . . . . 6  |-  ( ( ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  Y  /\  S  e.  Q. )  ->  ( S  +Q  ( ( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) ) 
<Q  ( S  +Q  Y
) )
2624, 5, 25syl2anc 409 . . . . 5  |-  ( ph  ->  ( S  +Q  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) )  <Q  ( S  +Q  Y ) )
27 caucvgprprlemloccalc.syt . . . . 5  |-  ( ph  ->  ( S  +Q  Y
)  =  T )
2826, 27breqtrd 4008 . . . 4  |-  ( ph  ->  ( S  +Q  (
( *Q `  [ <. M ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) )  <Q  T )
2915, 28eqbrtrd 4004 . . 3  |-  ( ph  ->  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  T )
30 ltnqpri 7535 . . 3  |-  ( ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  T  ->  <. { l  |  l  <Q  (
( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
3129, 30syl 14 . 2  |-  ( ph  -> 
<. { l  |  l 
<Q  ( ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
) } ,  {
u  |  ( ( S  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  <P  <. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
3213, 31eqbrtrrd 4006 1  |-  ( ph  ->  ( <. { l  |  l  <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
)  <Q  u } >.  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )  <P 
<. { l  |  l 
<Q  T } ,  {
u  |  T  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   <.cop 3579   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   1oc1o 6377   [cec 6499   N.cnpi 7213    ~Q ceq 7220   Q.cnq 7221    +Q cplq 7223   *Qcrq 7225    <Q cltq 7226    +P. cpp 7234    <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-iplp 7409  df-iltp 7411
This theorem is referenced by:  caucvgprprlemloc  7644
  Copyright terms: Public domain W3C validator