ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjdivap Unicode version

Theorem cjdivap 10693
Description: Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.)
Assertion
Ref Expression
cjdivap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
* `  ( A  /  B ) )  =  ( ( * `  A )  /  (
* `  B )
) )

Proof of Theorem cjdivap
StepHypRef Expression
1 divclap 8450 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  e.  CC )
2 cjcl 10632 . . . 4  |-  ( ( A  /  B )  e.  CC  ->  (
* `  ( A  /  B ) )  e.  CC )
31, 2syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
* `  ( A  /  B ) )  e.  CC )
4 simp2 982 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B  e.  CC )
5 cjcl 10632 . . . 4  |-  ( B  e.  CC  ->  (
* `  B )  e.  CC )
64, 5syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
* `  B )  e.  CC )
7 simp3 983 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B #  0 )
8 cjap0 10691 . . . . 5  |-  ( B  e.  CC  ->  ( B #  0  <->  ( * `  B ) #  0 ) )
94, 8syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( B #  0  <->  ( * `  B ) #  0 ) )
107, 9mpbid 146 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
* `  B ) #  0 )
113, 6, 10divcanap4d 8568 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( ( * `  ( A  /  B
) )  x.  (
* `  B )
)  /  ( * `
 B ) )  =  ( * `  ( A  /  B
) ) )
12 cjmul 10669 . . . . 5  |-  ( ( ( A  /  B
)  e.  CC  /\  B  e.  CC )  ->  ( * `  (
( A  /  B
)  x.  B ) )  =  ( ( * `  ( A  /  B ) )  x.  ( * `  B ) ) )
131, 4, 12syl2anc 408 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
* `  ( ( A  /  B )  x.  B ) )  =  ( ( * `  ( A  /  B
) )  x.  (
* `  B )
) )
14 divcanap1 8453 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( A  /  B
)  x.  B )  =  A )
1514fveq2d 5425 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
* `  ( ( A  /  B )  x.  B ) )  =  ( * `  A
) )
1613, 15eqtr3d 2174 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( * `  ( A  /  B ) )  x.  ( * `  B ) )  =  ( * `  A
) )
1716oveq1d 5789 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( ( * `  ( A  /  B
) )  x.  (
* `  B )
)  /  ( * `
 B ) )  =  ( ( * `
 A )  / 
( * `  B
) ) )
1811, 17eqtr3d 2174 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
* `  ( A  /  B ) )  =  ( ( * `  A )  /  (
* `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7630   0cc0 7632    x. cmul 7637   # cap 8355    / cdiv 8444   *ccj 10623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-2 8791  df-cj 10626  df-re 10627  df-im 10628
This theorem is referenced by:  cjdivapi  10719  cjdivapd  10752
  Copyright terms: Public domain W3C validator