ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcanap4d Unicode version

Theorem divcanap4d 8823
Description: A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
Hypotheses
Ref Expression
divcld.1  |-  ( ph  ->  A  e.  CC )
divcld.2  |-  ( ph  ->  B  e.  CC )
divclapd.3  |-  ( ph  ->  B #  0 )
Assertion
Ref Expression
divcanap4d  |-  ( ph  ->  ( ( A  x.  B )  /  B
)  =  A )

Proof of Theorem divcanap4d
StepHypRef Expression
1 divcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 divcld.2 . 2  |-  ( ph  ->  B  e.  CC )
3 divclapd.3 . 2  |-  ( ph  ->  B #  0 )
4 divcanap4 8726 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( A  x.  B
)  /  B )  =  A )
51, 2, 3, 4syl3anc 1249 1  |-  ( ph  ->  ( ( A  x.  B )  /  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7877   0cc0 7879    x. cmul 7884   # cap 8608    / cdiv 8699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700
This theorem is referenced by:  mvllmulapd  8869  ltmuldiv  8901  irrmul  9721  mul2lt0rlt0  9834  mulqmod0  10422  modqcyc  10451  q2txmodxeq0  10476  expaddzaplem  10674  mulsubdivbinom2ap  10803  facdiv  10830  permnn  10863  cjdivap  11074  resqrexlemcalc1  11179  sqrtdiv  11207  absdivap  11235  gcddiv  12186  divgcdcoprm0  12269  hashgcdlem  12406  gausslemma2dlem3  15304  2lgslem1a2  15328  2lgslem3b  15335  2lgslem3c  15336  2lgslem3d  15337  2sqlem3  15358
  Copyright terms: Public domain W3C validator