Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cjdivap | GIF version |
Description: Complex conjugate distributes over division. (Contributed by Jim Kingdon, 14-Jun-2020.) |
Ref | Expression |
---|---|
cjdivap | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divclap 8595 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ) | |
2 | cjcl 10812 | . . . 4 ⊢ ((𝐴 / 𝐵) ∈ ℂ → (∗‘(𝐴 / 𝐵)) ∈ ℂ) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘(𝐴 / 𝐵)) ∈ ℂ) |
4 | simp2 993 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 ∈ ℂ) | |
5 | cjcl 10812 | . . . 4 ⊢ (𝐵 ∈ ℂ → (∗‘𝐵) ∈ ℂ) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘𝐵) ∈ ℂ) |
7 | simp3 994 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → 𝐵 # 0) | |
8 | cjap0 10871 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (𝐵 # 0 ↔ (∗‘𝐵) # 0)) | |
9 | 4, 8 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 # 0 ↔ (∗‘𝐵) # 0)) |
10 | 7, 9 | mpbid 146 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘𝐵) # 0) |
11 | 3, 6, 10 | divcanap4d 8713 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)) / (∗‘𝐵)) = (∗‘(𝐴 / 𝐵))) |
12 | cjmul 10849 | . . . . 5 ⊢ (((𝐴 / 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘((𝐴 / 𝐵) · 𝐵)) = ((∗‘(𝐴 / 𝐵)) · (∗‘𝐵))) | |
13 | 1, 4, 12 | syl2anc 409 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘((𝐴 / 𝐵) · 𝐵)) = ((∗‘(𝐴 / 𝐵)) · (∗‘𝐵))) |
14 | divcanap1 8598 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | |
15 | 14 | fveq2d 5500 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘((𝐴 / 𝐵) · 𝐵)) = (∗‘𝐴)) |
16 | 13, 15 | eqtr3d 2205 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)) = (∗‘𝐴)) |
17 | 16 | oveq1d 5868 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (((∗‘(𝐴 / 𝐵)) · (∗‘𝐵)) / (∗‘𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) |
18 | 11, 17 | eqtr3d 2205 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (∗‘(𝐴 / 𝐵)) = ((∗‘𝐴) / (∗‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 973 = wceq 1348 ∈ wcel 2141 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 0cc0 7774 · cmul 7779 # cap 8500 / cdiv 8589 ∗ccj 10803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-2 8937 df-cj 10806 df-re 10807 df-im 10808 |
This theorem is referenced by: cjdivapi 10899 cjdivapd 10932 |
Copyright terms: Public domain | W3C validator |