ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  clim0c Unicode version

Theorem clim0c 11296
Description: Express the predicate  F converges to  0. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
clim0.1  |-  Z  =  ( ZZ>= `  M )
clim0.2  |-  ( ph  ->  M  e.  ZZ )
clim0.3  |-  ( ph  ->  F  e.  V )
clim0.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
clim0c.6  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
Assertion
Ref Expression
clim0c  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  B
)  <  x )
)
Distinct variable groups:    j, k, x, F    j, M    ph, j,
k, x    j, Z, k
Allowed substitution hints:    B( x, j, k)    M( x, k)    V( x, j, k)    Z( x)

Proof of Theorem clim0c
StepHypRef Expression
1 clim0.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 clim0.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 clim0.3 . . 3  |-  ( ph  ->  F  e.  V )
4 clim0.4 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  B )
5 0cnd 7952 . . 3  |-  ( ph  ->  0  e.  CC )
6 clim0c.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  B  e.  CC )
71, 2, 3, 4, 5, 6clim2c 11294 . 2  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( B  -  0 ) )  <  x ) )
81uztrn2 9547 . . . . . . 7  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
96subid1d 8259 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( B  -  0 )  =  B )
109fveq2d 5521 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( B  - 
0 ) )  =  ( abs `  B
) )
1110breq1d 4015 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  (
( abs `  ( B  -  0 ) )  <  x  <->  ( abs `  B )  <  x
) )
128, 11sylan2 286 . . . . . 6  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( abs `  ( B  -  0 ) )  <  x  <->  ( abs `  B )  <  x
) )
1312anassrs 400 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( abs `  ( B  - 
0 ) )  < 
x  <->  ( abs `  B
)  <  x )
)
1413ralbidva 2473 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( B  -  0 ) )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( abs `  B
)  <  x )
)
1514rexbidva 2474 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( B  -  0 ) )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  B
)  <  x )
)
1615ralbidv 2477 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( B  -  0 ) )  <  x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  B
)  <  x )
)
177, 16bitrd 188 1  |-  ( ph  ->  ( F  ~~>  0  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  B
)  <  x )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   0cc0 7813    < clt 7994    - cmin 8130   ZZcz 9255   ZZ>=cuz 9530   RR+crp 9655   abscabs 11008    ~~> cli 11288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-clim 11289
This theorem is referenced by:  climabs0  11317  serf0  11362  divcnv  11507
  Copyright terms: Public domain W3C validator