ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2expltfac Unicode version

Theorem 2expltfac 12832
Description: The factorial grows faster than two to the power  N. (Contributed by Mario Carneiro, 15-Sep-2016.)
Assertion
Ref Expression
2expltfac  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2 ^ N )  < 
( ! `  N
) )

Proof of Theorem 2expltfac
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5964 . . . 4  |-  ( x  =  4  ->  (
2 ^ x )  =  ( 2 ^ 4 ) )
2 2exp4 12824 . . . 4  |-  ( 2 ^ 4 )  = ; 1
6
31, 2eqtrdi 2255 . . 3  |-  ( x  =  4  ->  (
2 ^ x )  = ; 1 6 )
4 fveq2 5588 . . . 4  |-  ( x  =  4  ->  ( ! `  x )  =  ( ! ` 
4 ) )
5 fac4 10895 . . . 4  |-  ( ! `
 4 )  = ; 2
4
64, 5eqtrdi 2255 . . 3  |-  ( x  =  4  ->  ( ! `  x )  = ; 2 4 )
73, 6breq12d 4063 . 2  |-  ( x  =  4  ->  (
( 2 ^ x
)  <  ( ! `  x )  <-> ; 1 6  < ; 2 4 ) )
8 oveq2 5964 . . 3  |-  ( x  =  n  ->  (
2 ^ x )  =  ( 2 ^ n ) )
9 fveq2 5588 . . 3  |-  ( x  =  n  ->  ( ! `  x )  =  ( ! `  n ) )
108, 9breq12d 4063 . 2  |-  ( x  =  n  ->  (
( 2 ^ x
)  <  ( ! `  x )  <->  ( 2 ^ n )  < 
( ! `  n
) ) )
11 oveq2 5964 . . 3  |-  ( x  =  ( n  + 
1 )  ->  (
2 ^ x )  =  ( 2 ^ ( n  +  1 ) ) )
12 fveq2 5588 . . 3  |-  ( x  =  ( n  + 
1 )  ->  ( ! `  x )  =  ( ! `  ( n  +  1
) ) )
1311, 12breq12d 4063 . 2  |-  ( x  =  ( n  + 
1 )  ->  (
( 2 ^ x
)  <  ( ! `  x )  <->  ( 2 ^ ( n  + 
1 ) )  < 
( ! `  (
n  +  1 ) ) ) )
14 oveq2 5964 . . 3  |-  ( x  =  N  ->  (
2 ^ x )  =  ( 2 ^ N ) )
15 fveq2 5588 . . 3  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
1614, 15breq12d 4063 . 2  |-  ( x  =  N  ->  (
( 2 ^ x
)  <  ( ! `  x )  <->  ( 2 ^ N )  < 
( ! `  N
) ) )
17 1nn0 9326 . . 3  |-  1  e.  NN0
18 2nn0 9327 . . 3  |-  2  e.  NN0
19 6nn0 9331 . . 3  |-  6  e.  NN0
20 4nn0 9329 . . 3  |-  4  e.  NN0
21 6lt10 9652 . . 3  |-  6  < ; 1
0
22 1lt2 9221 . . 3  |-  1  <  2
2317, 18, 19, 20, 21, 22decltc 9547 . 2  |- ; 1 6  < ; 2 4
24 2nn 9213 . . . . . . . . 9  |-  2  e.  NN
2524a1i 9 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  NN )
26 4nn 9215 . . . . . . . . . 10  |-  4  e.  NN
27 simpl 109 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  ( ZZ>= ` 
4 ) )
28 eluznn 9736 . . . . . . . . . 10  |-  ( ( 4  e.  NN  /\  n  e.  ( ZZ>= ` 
4 ) )  ->  n  e.  NN )
2926, 27, 28sylancr 414 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  NN )
3029nnnn0d 9363 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  NN0 )
3125, 30nnexpcld 10857 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ n
)  e.  NN )
3231nnred 9064 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ n
)  e.  RR )
33 2re 9121 . . . . . . 7  |-  2  e.  RR
3433a1i 9 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  RR )
3532, 34remulcld 8118 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( 2 ^ n )  x.  2 )  e.  RR )
3630faccld 10898 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  n
)  e.  NN )
3736nnred 9064 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  n
)  e.  RR )
3837, 34remulcld 8118 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( ! `  n )  x.  2 )  e.  RR )
3929nnred 9064 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  RR )
40 1red 8102 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
1  e.  RR )
4139, 40readdcld 8117 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( n  +  1 )  e.  RR )
4237, 41remulcld 8118 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( ! `  n )  x.  (
n  +  1 ) )  e.  RR )
43 2rp 9795 . . . . . . 7  |-  2  e.  RR+
4443a1i 9 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  RR+ )
45 simpr 110 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ n
)  <  ( ! `  n ) )
4632, 37, 44, 45ltmul1dd 9889 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( 2 ^ n )  x.  2 )  <  ( ( ! `  n )  x.  2 ) )
4736nnnn0d 9363 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  n
)  e.  NN0 )
4847nn0ge0d 9366 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
0  <_  ( ! `  n ) )
49 df-2 9110 . . . . . . 7  |-  2  =  ( 1  +  1 )
5029nnge1d 9094 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
1  <_  n )
5140, 39, 40, 50leadd1dd 8647 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 1  +  1 )  <_  ( n  +  1 ) )
5249, 51eqbrtrid 4085 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  <_  ( n  +  1 ) )
5334, 41, 37, 48, 52lemul2ad 9028 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( ! `  n )  x.  2 )  <_  ( ( ! `  n )  x.  ( n  +  1 ) ) )
5435, 38, 42, 46, 53ltletrd 8511 . . . 4  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( 2 ^ n )  x.  2 )  <  ( ( ! `  n )  x.  ( n  + 
1 ) ) )
55 2cnd 9124 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  CC )
5655, 30expp1d 10836 . . . 4  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ (
n  +  1 ) )  =  ( ( 2 ^ n )  x.  2 ) )
57 facp1 10892 . . . . 5  |-  ( n  e.  NN0  ->  ( ! `
 ( n  + 
1 ) )  =  ( ( ! `  n )  x.  (
n  +  1 ) ) )
5830, 57syl 14 . . . 4  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  (
n  +  1 ) )  =  ( ( ! `  n )  x.  ( n  + 
1 ) ) )
5954, 56, 583brtr4d 4082 . . 3  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ (
n  +  1 ) )  <  ( ! `
 ( n  + 
1 ) ) )
6059ex 115 . 2  |-  ( n  e.  ( ZZ>= `  4
)  ->  ( (
2 ^ n )  <  ( ! `  n )  ->  (
2 ^ ( n  +  1 ) )  <  ( ! `  ( n  +  1
) ) ) )
617, 10, 13, 16, 23, 60uzind4i 9728 1  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2 ^ N )  < 
( ! `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   class class class wbr 4050   ` cfv 5279  (class class class)co 5956   RRcr 7939   1c1 7941    + caddc 7943    x. cmul 7945    < clt 8122    <_ cle 8123   NNcn 9051   2c2 9102   4c4 9104   6c6 9106   NN0cn0 9310  ;cdc 9519   ZZ>=cuz 9663   RR+crp 9790   ^cexp 10700   !cfa 10887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4166  ax-sep 4169  ax-nul 4177  ax-pow 4225  ax-pr 4260  ax-un 4487  ax-setind 4592  ax-iinf 4643  ax-cnex 8031  ax-resscn 8032  ax-1cn 8033  ax-1re 8034  ax-icn 8035  ax-addcl 8036  ax-addrcl 8037  ax-mulcl 8038  ax-mulrcl 8039  ax-addcom 8040  ax-mulcom 8041  ax-addass 8042  ax-mulass 8043  ax-distr 8044  ax-i2m1 8045  ax-0lt1 8046  ax-1rid 8047  ax-0id 8048  ax-rnegex 8049  ax-precex 8050  ax-cnre 8051  ax-pre-ltirr 8052  ax-pre-ltwlin 8053  ax-pre-lttrn 8054  ax-pre-apti 8055  ax-pre-ltadd 8056  ax-pre-mulgt0 8057  ax-pre-mulext 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-uni 3856  df-int 3891  df-iun 3934  df-br 4051  df-opab 4113  df-mpt 4114  df-tr 4150  df-id 4347  df-po 4350  df-iso 4351  df-iord 4420  df-on 4422  df-ilim 4423  df-suc 4425  df-iom 4646  df-xp 4688  df-rel 4689  df-cnv 4690  df-co 4691  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-iota 5240  df-fun 5281  df-fn 5282  df-f 5283  df-f1 5284  df-fo 5285  df-f1o 5286  df-fv 5287  df-riota 5911  df-ov 5959  df-oprab 5960  df-mpo 5961  df-1st 6238  df-2nd 6239  df-recs 6403  df-frec 6489  df-pnf 8124  df-mnf 8125  df-xr 8126  df-ltxr 8127  df-le 8128  df-sub 8260  df-neg 8261  df-reap 8663  df-ap 8670  df-div 8761  df-inn 9052  df-2 9110  df-3 9111  df-4 9112  df-5 9113  df-6 9114  df-7 9115  df-8 9116  df-9 9117  df-n0 9311  df-z 9388  df-dec 9520  df-uz 9664  df-rp 9791  df-seqfrec 10610  df-exp 10701  df-fac 10888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator