ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2expltfac Unicode version

Theorem 2expltfac 12618
Description: The factorial grows faster than two to the power  N. (Contributed by Mario Carneiro, 15-Sep-2016.)
Assertion
Ref Expression
2expltfac  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2 ^ N )  < 
( ! `  N
) )

Proof of Theorem 2expltfac
Dummy variables  x  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5931 . . . 4  |-  ( x  =  4  ->  (
2 ^ x )  =  ( 2 ^ 4 ) )
2 2exp4 12610 . . . 4  |-  ( 2 ^ 4 )  = ; 1
6
31, 2eqtrdi 2245 . . 3  |-  ( x  =  4  ->  (
2 ^ x )  = ; 1 6 )
4 fveq2 5559 . . . 4  |-  ( x  =  4  ->  ( ! `  x )  =  ( ! ` 
4 ) )
5 fac4 10827 . . . 4  |-  ( ! `
 4 )  = ; 2
4
64, 5eqtrdi 2245 . . 3  |-  ( x  =  4  ->  ( ! `  x )  = ; 2 4 )
73, 6breq12d 4047 . 2  |-  ( x  =  4  ->  (
( 2 ^ x
)  <  ( ! `  x )  <-> ; 1 6  < ; 2 4 ) )
8 oveq2 5931 . . 3  |-  ( x  =  n  ->  (
2 ^ x )  =  ( 2 ^ n ) )
9 fveq2 5559 . . 3  |-  ( x  =  n  ->  ( ! `  x )  =  ( ! `  n ) )
108, 9breq12d 4047 . 2  |-  ( x  =  n  ->  (
( 2 ^ x
)  <  ( ! `  x )  <->  ( 2 ^ n )  < 
( ! `  n
) ) )
11 oveq2 5931 . . 3  |-  ( x  =  ( n  + 
1 )  ->  (
2 ^ x )  =  ( 2 ^ ( n  +  1 ) ) )
12 fveq2 5559 . . 3  |-  ( x  =  ( n  + 
1 )  ->  ( ! `  x )  =  ( ! `  ( n  +  1
) ) )
1311, 12breq12d 4047 . 2  |-  ( x  =  ( n  + 
1 )  ->  (
( 2 ^ x
)  <  ( ! `  x )  <->  ( 2 ^ ( n  + 
1 ) )  < 
( ! `  (
n  +  1 ) ) ) )
14 oveq2 5931 . . 3  |-  ( x  =  N  ->  (
2 ^ x )  =  ( 2 ^ N ) )
15 fveq2 5559 . . 3  |-  ( x  =  N  ->  ( ! `  x )  =  ( ! `  N ) )
1614, 15breq12d 4047 . 2  |-  ( x  =  N  ->  (
( 2 ^ x
)  <  ( ! `  x )  <->  ( 2 ^ N )  < 
( ! `  N
) ) )
17 1nn0 9267 . . 3  |-  1  e.  NN0
18 2nn0 9268 . . 3  |-  2  e.  NN0
19 6nn0 9272 . . 3  |-  6  e.  NN0
20 4nn0 9270 . . 3  |-  4  e.  NN0
21 6lt10 9592 . . 3  |-  6  < ; 1
0
22 1lt2 9162 . . 3  |-  1  <  2
2317, 18, 19, 20, 21, 22decltc 9487 . 2  |- ; 1 6  < ; 2 4
24 2nn 9154 . . . . . . . . 9  |-  2  e.  NN
2524a1i 9 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  NN )
26 4nn 9156 . . . . . . . . . 10  |-  4  e.  NN
27 simpl 109 . . . . . . . . . 10  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  ( ZZ>= ` 
4 ) )
28 eluznn 9676 . . . . . . . . . 10  |-  ( ( 4  e.  NN  /\  n  e.  ( ZZ>= ` 
4 ) )  ->  n  e.  NN )
2926, 27, 28sylancr 414 . . . . . . . . 9  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  NN )
3029nnnn0d 9304 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  NN0 )
3125, 30nnexpcld 10789 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ n
)  e.  NN )
3231nnred 9005 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ n
)  e.  RR )
33 2re 9062 . . . . . . 7  |-  2  e.  RR
3433a1i 9 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  RR )
3532, 34remulcld 8059 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( 2 ^ n )  x.  2 )  e.  RR )
3630faccld 10830 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  n
)  e.  NN )
3736nnred 9005 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  n
)  e.  RR )
3837, 34remulcld 8059 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( ! `  n )  x.  2 )  e.  RR )
3929nnred 9005 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  ->  n  e.  RR )
40 1red 8043 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
1  e.  RR )
4139, 40readdcld 8058 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( n  +  1 )  e.  RR )
4237, 41remulcld 8059 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( ! `  n )  x.  (
n  +  1 ) )  e.  RR )
43 2rp 9735 . . . . . . 7  |-  2  e.  RR+
4443a1i 9 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  RR+ )
45 simpr 110 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ n
)  <  ( ! `  n ) )
4632, 37, 44, 45ltmul1dd 9829 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( 2 ^ n )  x.  2 )  <  ( ( ! `  n )  x.  2 ) )
4736nnnn0d 9304 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  n
)  e.  NN0 )
4847nn0ge0d 9307 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
0  <_  ( ! `  n ) )
49 df-2 9051 . . . . . . 7  |-  2  =  ( 1  +  1 )
5029nnge1d 9035 . . . . . . . 8  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
1  <_  n )
5140, 39, 40, 50leadd1dd 8588 . . . . . . 7  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 1  +  1 )  <_  ( n  +  1 ) )
5249, 51eqbrtrid 4069 . . . . . 6  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  <_  ( n  +  1 ) )
5334, 41, 37, 48, 52lemul2ad 8969 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( ! `  n )  x.  2 )  <_  ( ( ! `  n )  x.  ( n  +  1 ) ) )
5435, 38, 42, 46, 53ltletrd 8452 . . . 4  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ( 2 ^ n )  x.  2 )  <  ( ( ! `  n )  x.  ( n  + 
1 ) ) )
55 2cnd 9065 . . . . 5  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
2  e.  CC )
5655, 30expp1d 10768 . . . 4  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ (
n  +  1 ) )  =  ( ( 2 ^ n )  x.  2 ) )
57 facp1 10824 . . . . 5  |-  ( n  e.  NN0  ->  ( ! `
 ( n  + 
1 ) )  =  ( ( ! `  n )  x.  (
n  +  1 ) ) )
5830, 57syl 14 . . . 4  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( ! `  (
n  +  1 ) )  =  ( ( ! `  n )  x.  ( n  + 
1 ) ) )
5954, 56, 583brtr4d 4066 . . 3  |-  ( ( n  e.  ( ZZ>= ` 
4 )  /\  (
2 ^ n )  <  ( ! `  n ) )  -> 
( 2 ^ (
n  +  1 ) )  <  ( ! `
 ( n  + 
1 ) ) )
6059ex 115 . 2  |-  ( n  e.  ( ZZ>= `  4
)  ->  ( (
2 ^ n )  <  ( ! `  n )  ->  (
2 ^ ( n  +  1 ) )  <  ( ! `  ( n  +  1
) ) ) )
617, 10, 13, 16, 23, 60uzind4i 9668 1  |-  ( N  e.  ( ZZ>= `  4
)  ->  ( 2 ^ N )  < 
( ! `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5923   RRcr 7880   1c1 7882    + caddc 7884    x. cmul 7886    < clt 8063    <_ cle 8064   NNcn 8992   2c2 9043   4c4 9045   6c6 9047   NN0cn0 9251  ;cdc 9459   ZZ>=cuz 9603   RR+crp 9730   ^cexp 10632   !cfa 10819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-5 9054  df-6 9055  df-7 9056  df-8 9057  df-9 9058  df-n0 9252  df-z 9329  df-dec 9460  df-uz 9604  df-rp 9731  df-seqfrec 10542  df-exp 10633  df-fac 10820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator