Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzel2 | Unicode version |
Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzel2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 9971 | . 2 | |
2 | eluzelz 9489 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 cfv 5196 (class class class)co 5851 cz 9205 cuz 9480 cfz 9958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-setind 4519 ax-cnex 7858 ax-resscn 7859 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-neg 8086 df-z 9206 df-uz 9481 df-fz 9959 |
This theorem is referenced by: elfz1eq 9984 fzdisj 10001 fzssp1 10016 fzp1disj 10029 fzrev2i 10035 fzrev3 10036 fznuz 10051 fznn0sub2 10077 elfzmlbm 10080 difelfznle 10084 nn0disj 10087 fzofzp1b 10177 iseqf1olemqcl 10435 iseqf1olemab 10438 iseqf1olemqf1o 10442 iseqf1olemqk 10443 iseqf1olemjpcl 10444 iseqf1olemqpcl 10445 iseqf1olemfvp 10446 seq3f1olemqsumkj 10447 seq3f1olemqsumk 10448 seq3f1olemqsum 10449 seq3f1olemstep 10450 bcm1k 10687 bcp1nk 10689 |
Copyright terms: Public domain | W3C validator |