| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzel2 | Unicode version | ||
| Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 10146 |
. 2
| |
| 2 | eluzelz 9659 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-neg 8248 df-z 9375 df-uz 9651 df-fz 10133 |
| This theorem is referenced by: elfz1eq 10159 fzdisj 10176 fzssp1 10191 fzp1disj 10204 fzrev2i 10210 fzrev3 10211 fznuz 10226 fznn0sub2 10252 elfzmlbm 10255 difelfznle 10259 nn0disj 10262 fzofzp1b 10359 iseqf1olemqcl 10646 iseqf1olemab 10649 iseqf1olemqf1o 10653 iseqf1olemqk 10654 iseqf1olemjpcl 10655 iseqf1olemqpcl 10656 iseqf1olemfvp 10657 seq3f1olemqsumkj 10658 seq3f1olemqsumk 10659 seq3f1olemqsum 10660 seq3f1olemstep 10661 bcm1k 10907 bcp1nk 10909 swrdwrdsymbg 11120 ccatswrd 11126 |
| Copyright terms: Public domain | W3C validator |