ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzel1 Unicode version

Theorem elfzel1 10220
Description: Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzel1  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )

Proof of Theorem elfzel1
StepHypRef Expression
1 elfzuz 10217 . 2  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
2 eluzel2 9727 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 1  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   ` cfv 5318  (class class class)co 6001   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-cnex 8090  ax-resscn 8091
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-neg 8320  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  fzdisj  10248  fzrev2i  10282  fzrev3  10283  uznfz  10299  elfzmlbm  10327  fzoval  10344  iseqf1olemqcl  10721  iseqf1olemab  10724  iseqf1olemqf1o  10728  iseqf1olemqk  10729  iseqf1olemjpcl  10730  iseqf1olemqpcl  10731  iseqf1olemfvp  10732  seq3f1olemqsumkj  10733  seq3f1olemqsumk  10734  seq3f1olemqsum  10735  seq3f1olemstep  10736  bcp1nk  10984  pfxccatin12  11265
  Copyright terms: Public domain W3C validator