ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzel1 Unicode version

Theorem elfzel1 9500
Description: Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzel1  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )

Proof of Theorem elfzel1
StepHypRef Expression
1 elfzuz 9497 . 2  |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M )
)
2 eluzel2 9085 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 1  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1439   ` cfv 5028  (class class class)co 5666   ZZcz 8811   ZZ>=cuz 9080   ...cfz 9485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-setind 4366  ax-cnex 7497  ax-resscn 7498
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-mpt 3907  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-neg 7717  df-z 8812  df-uz 9081  df-fz 9486
This theorem is referenced by:  fzdisj  9527  fzrev2i  9561  fzrev3  9562  uznfz  9578  elfzmlbm  9603  fzoval  9620  iseqf1olemqcl  9976  iseqf1olemab  9979  iseqf1olemqf1o  9983  iseqf1olemqk  9984  iseqf1olemjpcl  9985  iseqf1olemqpcl  9986  iseqf1olemfvp  9987  seq3f1olemqsumkj  9988  seq3f1olemqsumk  9989  seq3f1olemqsum  9990  seq3f1olemstep  9991  bcp1nk  10231
  Copyright terms: Public domain W3C validator