ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzel1 GIF version

Theorem elfzel1 10093
Description: Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzel1 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)

Proof of Theorem elfzel1
StepHypRef Expression
1 elfzuz 10090 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
2 eluzel2 9600 . 2 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 1 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  cfv 5255  (class class class)co 5919  cz 9320  cuz 9595  ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-cnex 7965  ax-resscn 7966
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-neg 8195  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  fzdisj  10121  fzrev2i  10155  fzrev3  10156  uznfz  10172  elfzmlbm  10200  fzoval  10217  iseqf1olemqcl  10573  iseqf1olemab  10576  iseqf1olemqf1o  10580  iseqf1olemqk  10581  iseqf1olemjpcl  10582  iseqf1olemqpcl  10583  iseqf1olemfvp  10584  seq3f1olemqsumkj  10585  seq3f1olemqsumk  10586  seq3f1olemqsum  10587  seq3f1olemstep  10588  bcp1nk  10836
  Copyright terms: Public domain W3C validator