![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > enqer | GIF version |
Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) |
Ref | Expression |
---|---|
enqer | ⊢ ~Q Er (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-enq 7349 | . 2 ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | |
2 | mulcompig 7333 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)) | |
3 | mulclpi 7330 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N) → (𝑥 ·N 𝑦) ∈ N) | |
4 | mulasspig 7334 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N ∧ 𝑧 ∈ N) → ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))) | |
5 | mulcanpig 7337 | . . 3 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N ∧ 𝑧 ∈ N) → ((𝑥 ·N 𝑦) = (𝑥 ·N 𝑧) ↔ 𝑦 = 𝑧)) | |
6 | 5 | biimpd 144 | . 2 ⊢ ((𝑥 ∈ N ∧ 𝑦 ∈ N ∧ 𝑧 ∈ N) → ((𝑥 ·N 𝑦) = (𝑥 ·N 𝑧) → 𝑦 = 𝑧)) |
7 | 1, 2, 3, 4, 6 | ecopoverg 6639 | 1 ⊢ ~Q Er (N × N) |
Colors of variables: wff set class |
Syntax hints: ∧ w3a 978 = wceq 1353 ∈ wcel 2148 × cxp 4626 (class class class)co 5878 Er wer 6535 Ncnpi 7274 ·N cmi 7276 ~Q ceq 7281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5881 df-oprab 5882 df-mpo 5883 df-1st 6144 df-2nd 6145 df-recs 6309 df-irdg 6374 df-oadd 6424 df-omul 6425 df-er 6538 df-ni 7306 df-mi 7308 df-enq 7349 |
This theorem is referenced by: enqeceq 7361 0nnq 7366 addpipqqs 7372 mulpipqqs 7375 ordpipqqs 7376 mulcanenqec 7388 |
Copyright terms: Public domain | W3C validator |