ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enqer GIF version

Theorem enqer 7359
Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Assertion
Ref Expression
enqer ~Q Er (N ร— N)

Proof of Theorem enqer
Dummy variables ๐‘ฅ ๐‘ฆ ๐‘ง ๐‘ค ๐‘ฃ ๐‘ข are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq 7348 . 2 ~Q = {โŸจ๐‘ฅ, ๐‘ฆโŸฉ โˆฃ ((๐‘ฅ โˆˆ (N ร— N) โˆง ๐‘ฆ โˆˆ (N ร— N)) โˆง โˆƒ๐‘งโˆƒ๐‘คโˆƒ๐‘ฃโˆƒ๐‘ข((๐‘ฅ = โŸจ๐‘ง, ๐‘คโŸฉ โˆง ๐‘ฆ = โŸจ๐‘ฃ, ๐‘ขโŸฉ) โˆง (๐‘ง ยทN ๐‘ข) = (๐‘ค ยทN ๐‘ฃ)))}
2 mulcompig 7332 . 2 ((๐‘ฅ โˆˆ N โˆง ๐‘ฆ โˆˆ N) โ†’ (๐‘ฅ ยทN ๐‘ฆ) = (๐‘ฆ ยทN ๐‘ฅ))
3 mulclpi 7329 . 2 ((๐‘ฅ โˆˆ N โˆง ๐‘ฆ โˆˆ N) โ†’ (๐‘ฅ ยทN ๐‘ฆ) โˆˆ N)
4 mulasspig 7333 . 2 ((๐‘ฅ โˆˆ N โˆง ๐‘ฆ โˆˆ N โˆง ๐‘ง โˆˆ N) โ†’ ((๐‘ฅ ยทN ๐‘ฆ) ยทN ๐‘ง) = (๐‘ฅ ยทN (๐‘ฆ ยทN ๐‘ง)))
5 mulcanpig 7336 . . 3 ((๐‘ฅ โˆˆ N โˆง ๐‘ฆ โˆˆ N โˆง ๐‘ง โˆˆ N) โ†’ ((๐‘ฅ ยทN ๐‘ฆ) = (๐‘ฅ ยทN ๐‘ง) โ†” ๐‘ฆ = ๐‘ง))
65biimpd 144 . 2 ((๐‘ฅ โˆˆ N โˆง ๐‘ฆ โˆˆ N โˆง ๐‘ง โˆˆ N) โ†’ ((๐‘ฅ ยทN ๐‘ฆ) = (๐‘ฅ ยทN ๐‘ง) โ†’ ๐‘ฆ = ๐‘ง))
71, 2, 3, 4, 6ecopoverg 6638 1 ~Q Er (N ร— N)
Colors of variables: wff set class
Syntax hints:   โˆง w3a 978   = wceq 1353   โˆˆ wcel 2148   ร— cxp 4626  (class class class)co 5877   Er wer 6534  Ncnpi 7273   ยทN cmi 7275   ~Q ceq 7280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-oadd 6423  df-omul 6424  df-er 6537  df-ni 7305  df-mi 7307  df-enq 7348
This theorem is referenced by:  enqeceq  7360  0nnq  7365  addpipqqs  7371  mulpipqqs  7374  ordpipqqs  7375  mulcanenqec  7387
  Copyright terms: Public domain W3C validator