ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemex Unicode version

Theorem exbtwnzlemex 10321
Description: Existence of an integer so that a given real number is between the integer and its successor. The real number must satisfy the  n  <_  A  \/  A  <  n hypothesis. For example either a rational number or a number which is irrational (in the sense of being apart from any rational number) will meet this condition.

The proof starts by finding two integers which are less than and greater than  A. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on the  n  <_  A  \/  A  <  n hypothesis, and iterating until the range consists of two consecutive integers. (Contributed by Jim Kingdon, 8-Oct-2021.)

Hypotheses
Ref Expression
exbtwnzlemex.a  |-  ( ph  ->  A  e.  RR )
exbtwnzlemex.tri  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
Assertion
Ref Expression
exbtwnzlemex  |-  ( ph  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Distinct variable groups:    A, n    x, A    ph, n
Allowed substitution hint:    ph( x)

Proof of Theorem exbtwnzlemex
Dummy variables  a  j  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exbtwnzlemex.a . . . 4  |-  ( ph  ->  A  e.  RR )
2 btwnz 9439 . . . 4  |-  ( A  e.  RR  ->  ( E. m  e.  ZZ  m  <  A  /\  E. j  e.  ZZ  A  <  j ) )
31, 2syl 14 . . 3  |-  ( ph  ->  ( E. m  e.  ZZ  m  <  A  /\  E. j  e.  ZZ  A  <  j ) )
4 reeanv 2664 . . 3  |-  ( E. m  e.  ZZ  E. j  e.  ZZ  (
m  <  A  /\  A  <  j )  <->  ( E. m  e.  ZZ  m  <  A  /\  E. j  e.  ZZ  A  <  j
) )
53, 4sylibr 134 . 2  |-  ( ph  ->  E. m  e.  ZZ  E. j  e.  ZZ  (
m  <  A  /\  A  <  j ) )
6 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  m  e.  ZZ )
76zred 9442 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  m  e.  RR )
81ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  A  e.  RR )
9 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  m  <  A )
107, 8, 9ltled 8140 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  m  <_  A )
11 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  A  <  j )
126zcnd 9443 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  m  e.  CC )
13 simplrr 536 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  -> 
j  e.  ZZ )
1413zcnd 9443 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  -> 
j  e.  CC )
1512, 14pncan3d 8335 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  -> 
( m  +  ( j  -  m ) )  =  j )
1611, 15breqtrrd 4058 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  A  <  ( m  +  ( j  -  m
) ) )
17 breq1 4033 . . . . . . . 8  |-  ( y  =  m  ->  (
y  <_  A  <->  m  <_  A ) )
18 oveq1 5926 . . . . . . . . 9  |-  ( y  =  m  ->  (
y  +  ( j  -  m ) )  =  ( m  +  ( j  -  m
) ) )
1918breq2d 4042 . . . . . . . 8  |-  ( y  =  m  ->  ( A  <  ( y  +  ( j  -  m
) )  <->  A  <  ( m  +  ( j  -  m ) ) ) )
2017, 19anbi12d 473 . . . . . . 7  |-  ( y  =  m  ->  (
( y  <_  A  /\  A  <  ( y  +  ( j  -  m ) ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  ( j  -  m ) ) ) ) )
2120rspcev 2865 . . . . . 6  |-  ( ( m  e.  ZZ  /\  ( m  <_  A  /\  A  <  ( m  +  ( j  -  m
) ) ) )  ->  E. y  e.  ZZ  ( y  <_  A  /\  A  <  ( y  +  ( j  -  m ) ) ) )
226, 10, 16, 21syl12anc 1247 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  E. y  e.  ZZ  ( y  <_  A  /\  A  <  ( y  +  ( j  -  m ) ) ) )
2313zred 9442 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  -> 
j  e.  RR )
247, 8, 23, 9, 11lttrd 8147 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  m  <  j )
25 znnsub 9371 . . . . . . . 8  |-  ( ( m  e.  ZZ  /\  j  e.  ZZ )  ->  ( m  <  j  <->  ( j  -  m )  e.  NN ) )
2625ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  -> 
( m  <  j  <->  ( j  -  m )  e.  NN ) )
2724, 26mpbid 147 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  -> 
( j  -  m
)  e.  NN )
28 exbtwnzlemex.tri . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
2928ralrimiva 2567 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  ZZ  ( n  <_  A  \/  A  <  n ) )
30 breq1 4033 . . . . . . . . . . 11  |-  ( n  =  a  ->  (
n  <_  A  <->  a  <_  A ) )
31 breq2 4034 . . . . . . . . . . 11  |-  ( n  =  a  ->  ( A  <  n  <->  A  <  a ) )
3230, 31orbi12d 794 . . . . . . . . . 10  |-  ( n  =  a  ->  (
( n  <_  A  \/  A  <  n )  <-> 
( a  <_  A  \/  A  <  a ) ) )
3332cbvralv 2726 . . . . . . . . 9  |-  ( A. n  e.  ZZ  (
n  <_  A  \/  A  <  n )  <->  A. a  e.  ZZ  ( a  <_  A  \/  A  <  a ) )
3429, 33sylib 122 . . . . . . . 8  |-  ( ph  ->  A. a  e.  ZZ  ( a  <_  A  \/  A  <  a ) )
3534ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  A. a  e.  ZZ  ( a  <_  A  \/  A  <  a ) )
3635r19.21bi 2582 . . . . . 6  |-  ( ( ( ( ph  /\  ( m  e.  ZZ  /\  j  e.  ZZ ) )  /\  ( m  <  A  /\  A  <  j ) )  /\  a  e.  ZZ )  ->  ( a  <_  A  \/  A  <  a ) )
3727, 8, 36exbtwnzlemshrink 10320 . . . . 5  |-  ( ( ( ( ph  /\  ( m  e.  ZZ  /\  j  e.  ZZ ) )  /\  ( m  <  A  /\  A  <  j ) )  /\  E. y  e.  ZZ  (
y  <_  A  /\  A  <  ( y  +  ( j  -  m
) ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
3822, 37mpdan 421 . . . 4  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
3938ex 115 . . 3  |-  ( (
ph  /\  ( m  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( m  < 
A  /\  A  <  j )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) ) )
4039rexlimdvva 2619 . 2  |-  ( ph  ->  ( E. m  e.  ZZ  E. j  e.  ZZ  ( m  < 
A  /\  A  <  j )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) ) )
415, 40mpd 13 1  |-  ( ph  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4030  (class class class)co 5919   RRcr 7873   1c1 7875    + caddc 7877    < clt 8056    <_ cle 8057    - cmin 8192   NNcn 8984   ZZcz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321
This theorem is referenced by:  qbtwnz  10323  apbtwnz  10346
  Copyright terms: Public domain W3C validator