ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbtwnzlemex Unicode version

Theorem exbtwnzlemex 10250
Description: Existence of an integer so that a given real number is between the integer and its successor. The real number must satisfy the  n  <_  A  \/  A  <  n hypothesis. For example either a rational number or a number which is irrational (in the sense of being apart from any rational number) will meet this condition.

The proof starts by finding two integers which are less than and greater than  A. Then this range can be shrunk by choosing an integer in between the endpoints of the range and then deciding which half of the range to keep based on the  n  <_  A  \/  A  <  n hypothesis, and iterating until the range consists of two consecutive integers. (Contributed by Jim Kingdon, 8-Oct-2021.)

Hypotheses
Ref Expression
exbtwnzlemex.a  |-  ( ph  ->  A  e.  RR )
exbtwnzlemex.tri  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
Assertion
Ref Expression
exbtwnzlemex  |-  ( ph  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Distinct variable groups:    A, n    x, A    ph, n
Allowed substitution hint:    ph( x)

Proof of Theorem exbtwnzlemex
Dummy variables  a  j  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exbtwnzlemex.a . . . 4  |-  ( ph  ->  A  e.  RR )
2 btwnz 9372 . . . 4  |-  ( A  e.  RR  ->  ( E. m  e.  ZZ  m  <  A  /\  E. j  e.  ZZ  A  <  j ) )
31, 2syl 14 . . 3  |-  ( ph  ->  ( E. m  e.  ZZ  m  <  A  /\  E. j  e.  ZZ  A  <  j ) )
4 reeanv 2647 . . 3  |-  ( E. m  e.  ZZ  E. j  e.  ZZ  (
m  <  A  /\  A  <  j )  <->  ( E. m  e.  ZZ  m  <  A  /\  E. j  e.  ZZ  A  <  j
) )
53, 4sylibr 134 . 2  |-  ( ph  ->  E. m  e.  ZZ  E. j  e.  ZZ  (
m  <  A  /\  A  <  j ) )
6 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  m  e.  ZZ )
76zred 9375 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  m  e.  RR )
81ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  A  e.  RR )
9 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  m  <  A )
107, 8, 9ltled 8076 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  m  <_  A )
11 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  A  <  j )
126zcnd 9376 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  m  e.  CC )
13 simplrr 536 . . . . . . . . 9  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  -> 
j  e.  ZZ )
1413zcnd 9376 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  -> 
j  e.  CC )
1512, 14pncan3d 8271 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  -> 
( m  +  ( j  -  m ) )  =  j )
1611, 15breqtrrd 4032 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  A  <  ( m  +  ( j  -  m
) ) )
17 breq1 4007 . . . . . . . 8  |-  ( y  =  m  ->  (
y  <_  A  <->  m  <_  A ) )
18 oveq1 5882 . . . . . . . . 9  |-  ( y  =  m  ->  (
y  +  ( j  -  m ) )  =  ( m  +  ( j  -  m
) ) )
1918breq2d 4016 . . . . . . . 8  |-  ( y  =  m  ->  ( A  <  ( y  +  ( j  -  m
) )  <->  A  <  ( m  +  ( j  -  m ) ) ) )
2017, 19anbi12d 473 . . . . . . 7  |-  ( y  =  m  ->  (
( y  <_  A  /\  A  <  ( y  +  ( j  -  m ) ) )  <-> 
( m  <_  A  /\  A  <  ( m  +  ( j  -  m ) ) ) ) )
2120rspcev 2842 . . . . . 6  |-  ( ( m  e.  ZZ  /\  ( m  <_  A  /\  A  <  ( m  +  ( j  -  m
) ) ) )  ->  E. y  e.  ZZ  ( y  <_  A  /\  A  <  ( y  +  ( j  -  m ) ) ) )
226, 10, 16, 21syl12anc 1236 . . . . 5  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  E. y  e.  ZZ  ( y  <_  A  /\  A  <  ( y  +  ( j  -  m ) ) ) )
2313zred 9375 . . . . . . . 8  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  -> 
j  e.  RR )
247, 8, 23, 9, 11lttrd 8083 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  m  <  j )
25 znnsub 9304 . . . . . . . 8  |-  ( ( m  e.  ZZ  /\  j  e.  ZZ )  ->  ( m  <  j  <->  ( j  -  m )  e.  NN ) )
2625ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  -> 
( m  <  j  <->  ( j  -  m )  e.  NN ) )
2724, 26mpbid 147 . . . . . 6  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  -> 
( j  -  m
)  e.  NN )
28 exbtwnzlemex.tri . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ZZ )  ->  ( n  <_  A  \/  A  <  n ) )
2928ralrimiva 2550 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  ZZ  ( n  <_  A  \/  A  <  n ) )
30 breq1 4007 . . . . . . . . . . 11  |-  ( n  =  a  ->  (
n  <_  A  <->  a  <_  A ) )
31 breq2 4008 . . . . . . . . . . 11  |-  ( n  =  a  ->  ( A  <  n  <->  A  <  a ) )
3230, 31orbi12d 793 . . . . . . . . . 10  |-  ( n  =  a  ->  (
( n  <_  A  \/  A  <  n )  <-> 
( a  <_  A  \/  A  <  a ) ) )
3332cbvralv 2704 . . . . . . . . 9  |-  ( A. n  e.  ZZ  (
n  <_  A  \/  A  <  n )  <->  A. a  e.  ZZ  ( a  <_  A  \/  A  <  a ) )
3429, 33sylib 122 . . . . . . . 8  |-  ( ph  ->  A. a  e.  ZZ  ( a  <_  A  \/  A  <  a ) )
3534ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  A. a  e.  ZZ  ( a  <_  A  \/  A  <  a ) )
3635r19.21bi 2565 . . . . . 6  |-  ( ( ( ( ph  /\  ( m  e.  ZZ  /\  j  e.  ZZ ) )  /\  ( m  <  A  /\  A  <  j ) )  /\  a  e.  ZZ )  ->  ( a  <_  A  \/  A  <  a ) )
3727, 8, 36exbtwnzlemshrink 10249 . . . . 5  |-  ( ( ( ( ph  /\  ( m  e.  ZZ  /\  j  e.  ZZ ) )  /\  ( m  <  A  /\  A  <  j ) )  /\  E. y  e.  ZZ  (
y  <_  A  /\  A  <  ( y  +  ( j  -  m
) ) ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
3822, 37mpdan 421 . . . 4  |-  ( ( ( ph  /\  (
m  e.  ZZ  /\  j  e.  ZZ )
)  /\  ( m  <  A  /\  A  < 
j ) )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
3938ex 115 . . 3  |-  ( (
ph  /\  ( m  e.  ZZ  /\  j  e.  ZZ ) )  -> 
( ( m  < 
A  /\  A  <  j )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) ) )
4039rexlimdvva 2602 . 2  |-  ( ph  ->  ( E. m  e.  ZZ  E. j  e.  ZZ  ( m  < 
A  /\  A  <  j )  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  (
x  +  1 ) ) ) )
415, 40mpd 13 1  |-  ( ph  ->  E. x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4004  (class class class)co 5875   RRcr 7810   1c1 7812    + caddc 7814    < clt 7992    <_ cle 7993    - cmin 8128   NNcn 8919   ZZcz 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-ltadd 7927  ax-arch 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-inn 8920  df-n0 9177  df-z 9254
This theorem is referenced by:  qbtwnz  10252  apbtwnz  10274
  Copyright terms: Public domain W3C validator