| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmap | GIF version | ||
| Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fnmap | ⊢ ↑𝑚 Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-map 6767 | . 2 ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
| 2 | vex 2782 | . . 3 ⊢ 𝑦 ∈ V | |
| 3 | vex 2782 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | mapex 6771 | . . 3 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V |
| 6 | 1, 5 | fnmpoi 6319 | 1 ⊢ ↑𝑚 Fn (V × V) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2180 {cab 2195 Vcvv 2779 × cxp 4694 Fn wfn 5289 ⟶wf 5290 ↑𝑚 cmap 6765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-map 6767 |
| This theorem is referenced by: mapsnen 6934 map1 6935 mapen 6975 mapdom1g 6976 mapxpen 6977 xpmapenlem 6978 hashfacen 11025 wrdexg 11049 omctfn 12980 prdsvallem 13271 prdsval 13272 ismhm 13460 mhmex 13461 rhmex 14086 fnpsr 14596 psrelbas 14604 psrplusgg 14607 psraddcl 14609 psr0cl 14610 psr0lid 14611 psrnegcl 14612 psrlinv 14613 psrgrp 14614 psr1clfi 14617 mplsubgfilemcl 14628 cnfval 14833 cnpfval 14834 cnpval 14837 ismet 14983 isxmet 14984 xmetunirn 14997 plyval 15371 2omapen 16271 pw1mapen 16273 |
| Copyright terms: Public domain | W3C validator |