![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnmap | GIF version |
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fnmap | ⊢ ↑𝑚 Fn (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-map 6706 | . 2 ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
2 | vex 2763 | . . 3 ⊢ 𝑦 ∈ V | |
3 | vex 2763 | . . 3 ⊢ 𝑥 ∈ V | |
4 | mapex 6710 | . . 3 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V) | |
5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V |
6 | 1, 5 | fnmpoi 6258 | 1 ⊢ ↑𝑚 Fn (V × V) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 {cab 2179 Vcvv 2760 × cxp 4658 Fn wfn 5250 ⟶wf 5251 ↑𝑚 cmap 6704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-map 6706 |
This theorem is referenced by: mapsnen 6867 map1 6868 mapen 6904 mapdom1g 6905 mapxpen 6906 xpmapenlem 6907 hashfacen 10910 wrdexg 10928 omctfn 12603 ismhm 13036 mhmex 13037 rhmex 13656 fnpsr 14164 psrelbas 14171 psrplusgg 14173 psraddcl 14175 cnfval 14373 cnpfval 14374 cnpval 14377 ismet 14523 isxmet 14524 xmetunirn 14537 plyval 14911 |
Copyright terms: Public domain | W3C validator |