| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmap | GIF version | ||
| Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fnmap | ⊢ ↑𝑚 Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-map 6744 | . 2 ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
| 2 | vex 2776 | . . 3 ⊢ 𝑦 ∈ V | |
| 3 | vex 2776 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | mapex 6748 | . . 3 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V |
| 6 | 1, 5 | fnmpoi 6296 | 1 ⊢ ↑𝑚 Fn (V × V) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 {cab 2192 Vcvv 2773 × cxp 4677 Fn wfn 5271 ⟶wf 5272 ↑𝑚 cmap 6742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-map 6744 |
| This theorem is referenced by: mapsnen 6910 map1 6911 mapen 6950 mapdom1g 6951 mapxpen 6952 xpmapenlem 6953 hashfacen 10988 wrdexg 11012 omctfn 12858 prdsvallem 13148 prdsval 13149 ismhm 13337 mhmex 13338 rhmex 13963 fnpsr 14473 psrelbas 14481 psrplusgg 14484 psraddcl 14486 psr0cl 14487 psr0lid 14488 psrnegcl 14489 psrlinv 14490 psrgrp 14491 psr1clfi 14494 mplsubgfilemcl 14505 cnfval 14710 cnpfval 14711 cnpval 14714 ismet 14860 isxmet 14861 xmetunirn 14874 plyval 15248 2omapen 16007 |
| Copyright terms: Public domain | W3C validator |