ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmap GIF version

Theorem fnmap 6711
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fnmap 𝑚 Fn (V × V)

Proof of Theorem fnmap
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-map 6706 . 2 𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
2 vex 2763 . . 3 𝑦 ∈ V
3 vex 2763 . . 3 𝑥 ∈ V
4 mapex 6710 . . 3 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → {𝑓𝑓:𝑦𝑥} ∈ V)
52, 3, 4mp2an 426 . 2 {𝑓𝑓:𝑦𝑥} ∈ V
61, 5fnmpoi 6258 1 𝑚 Fn (V × V)
Colors of variables: wff set class
Syntax hints:  wcel 2164  {cab 2179  Vcvv 2760   × cxp 4658   Fn wfn 5250  wf 5251  𝑚 cmap 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706
This theorem is referenced by:  mapsnen  6867  map1  6868  mapen  6904  mapdom1g  6905  mapxpen  6906  xpmapenlem  6907  hashfacen  10910  wrdexg  10928  omctfn  12603  ismhm  13036  mhmex  13037  rhmex  13656  fnpsr  14164  psrelbas  14171  psrplusgg  14173  psraddcl  14175  cnfval  14373  cnpfval  14374  cnpval  14377  ismet  14523  isxmet  14524  xmetunirn  14537  plyval  14911
  Copyright terms: Public domain W3C validator