ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmap GIF version

Theorem fnmap 6621
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fnmap 𝑚 Fn (V × V)

Proof of Theorem fnmap
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-map 6616 . 2 𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
2 vex 2729 . . 3 𝑦 ∈ V
3 vex 2729 . . 3 𝑥 ∈ V
4 mapex 6620 . . 3 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → {𝑓𝑓:𝑦𝑥} ∈ V)
52, 3, 4mp2an 423 . 2 {𝑓𝑓:𝑦𝑥} ∈ V
61, 5fnmpoi 6172 1 𝑚 Fn (V × V)
Colors of variables: wff set class
Syntax hints:  wcel 2136  {cab 2151  Vcvv 2726   × cxp 4602   Fn wfn 5183  wf 5184  𝑚 cmap 6614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616
This theorem is referenced by:  mapsnen  6777  map1  6778  mapen  6812  mapdom1g  6813  mapxpen  6814  xpmapenlem  6815  hashfacen  10749  omctfn  12376  cnfval  12834  cnpfval  12835  cnpval  12838  ismet  12984  isxmet  12985  xmetunirn  12998
  Copyright terms: Public domain W3C validator