| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmap | GIF version | ||
| Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fnmap | ⊢ ↑𝑚 Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-map 6709 | . 2 ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
| 2 | vex 2766 | . . 3 ⊢ 𝑦 ∈ V | |
| 3 | vex 2766 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | mapex 6713 | . . 3 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V |
| 6 | 1, 5 | fnmpoi 6261 | 1 ⊢ ↑𝑚 Fn (V × V) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 {cab 2182 Vcvv 2763 × cxp 4661 Fn wfn 5253 ⟶wf 5254 ↑𝑚 cmap 6707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-map 6709 |
| This theorem is referenced by: mapsnen 6870 map1 6871 mapen 6907 mapdom1g 6908 mapxpen 6909 xpmapenlem 6910 hashfacen 10928 wrdexg 10946 omctfn 12660 ismhm 13093 mhmex 13094 rhmex 13713 fnpsr 14221 psrelbas 14228 psrplusgg 14230 psraddcl 14232 cnfval 14430 cnpfval 14431 cnpval 14434 ismet 14580 isxmet 14581 xmetunirn 14594 plyval 14968 |
| Copyright terms: Public domain | W3C validator |