ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnmap GIF version

Theorem fnmap 6602
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fnmap 𝑚 Fn (V × V)

Proof of Theorem fnmap
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-map 6597 . 2 𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
2 vex 2715 . . 3 𝑦 ∈ V
3 vex 2715 . . 3 𝑥 ∈ V
4 mapex 6601 . . 3 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → {𝑓𝑓:𝑦𝑥} ∈ V)
52, 3, 4mp2an 423 . 2 {𝑓𝑓:𝑦𝑥} ∈ V
61, 5fnmpoi 6154 1 𝑚 Fn (V × V)
Colors of variables: wff set class
Syntax hints:  wcel 2128  {cab 2143  Vcvv 2712   × cxp 4586   Fn wfn 5167  wf 5168  𝑚 cmap 6595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-fv 5180  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-map 6597
This theorem is referenced by:  mapsnen  6758  map1  6759  mapen  6793  mapdom1g  6794  mapxpen  6795  xpmapenlem  6796  hashfacen  10718  omctfn  12242  cnfval  12664  cnpfval  12665  cnpval  12668  ismet  12814  isxmet  12815  xmetunirn  12828
  Copyright terms: Public domain W3C validator