| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnmap | GIF version | ||
| Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fnmap | ⊢ ↑𝑚 Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-map 6805 | . 2 ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
| 2 | vex 2802 | . . 3 ⊢ 𝑦 ∈ V | |
| 3 | vex 2802 | . . 3 ⊢ 𝑥 ∈ V | |
| 4 | mapex 6809 | . . 3 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V) | |
| 5 | 2, 3, 4 | mp2an 426 | . 2 ⊢ {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V |
| 6 | 1, 5 | fnmpoi 6355 | 1 ⊢ ↑𝑚 Fn (V × V) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 {cab 2215 Vcvv 2799 × cxp 4717 Fn wfn 5313 ⟶wf 5314 ↑𝑚 cmap 6803 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-map 6805 |
| This theorem is referenced by: mapsnen 6972 map1 6973 mapen 7015 mapdom1g 7016 mapxpen 7017 xpmapenlem 7018 hashfacen 11066 wrdexg 11090 omctfn 13022 prdsvallem 13313 prdsval 13314 ismhm 13502 mhmex 13503 rhmex 14129 fnpsr 14639 psrelbas 14647 psrplusgg 14650 psraddcl 14652 psr0cl 14653 psr0lid 14654 psrnegcl 14655 psrlinv 14656 psrgrp 14657 psr1clfi 14660 mplsubgfilemcl 14671 cnfval 14876 cnpfval 14877 cnpval 14880 ismet 15026 isxmet 15027 xmetunirn 15040 plyval 15414 2omapen 16389 pw1mapen 16391 |
| Copyright terms: Public domain | W3C validator |