Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnmap | GIF version |
Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fnmap | ⊢ ↑𝑚 Fn (V × V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-map 6616 | . 2 ⊢ ↑𝑚 = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) | |
2 | vex 2729 | . . 3 ⊢ 𝑦 ∈ V | |
3 | vex 2729 | . . 3 ⊢ 𝑥 ∈ V | |
4 | mapex 6620 | . . 3 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V) | |
5 | 2, 3, 4 | mp2an 423 | . 2 ⊢ {𝑓 ∣ 𝑓:𝑦⟶𝑥} ∈ V |
6 | 1, 5 | fnmpoi 6172 | 1 ⊢ ↑𝑚 Fn (V × V) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2136 {cab 2151 Vcvv 2726 × cxp 4602 Fn wfn 5183 ⟶wf 5184 ↑𝑚 cmap 6614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 |
This theorem is referenced by: mapsnen 6777 map1 6778 mapen 6812 mapdom1g 6813 mapxpen 6814 xpmapenlem 6815 hashfacen 10749 omctfn 12376 cnfval 12834 cnpfval 12835 cnpval 12838 ismet 12984 isxmet 12985 xmetunirn 12998 |
Copyright terms: Public domain | W3C validator |