ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzopth GIF version

Theorem fzopth 10130
Description: A finite set of sequential integers can represent an ordered pair. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzopth (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))

Proof of Theorem fzopth
StepHypRef Expression
1 eluzfz1 10100 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
21adantr 276 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ (𝑀...𝑁))
3 simpr 110 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (𝑀...𝑁) = (𝐽...𝐾))
42, 3eleqtrd 2272 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ (𝐽...𝐾))
5 elfzuz 10090 . . . . . . 7 (𝑀 ∈ (𝐽...𝐾) → 𝑀 ∈ (ℤ𝐽))
6 uzss 9616 . . . . . . 7 (𝑀 ∈ (ℤ𝐽) → (ℤ𝑀) ⊆ (ℤ𝐽))
74, 5, 63syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑀) ⊆ (ℤ𝐽))
8 elfzuz2 10098 . . . . . . . . 9 (𝑀 ∈ (𝐽...𝐾) → 𝐾 ∈ (ℤ𝐽))
9 eluzfz1 10100 . . . . . . . . 9 (𝐾 ∈ (ℤ𝐽) → 𝐽 ∈ (𝐽...𝐾))
104, 8, 93syl 17 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐽 ∈ (𝐽...𝐾))
1110, 3eleqtrrd 2273 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐽 ∈ (𝑀...𝑁))
12 elfzuz 10090 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ (ℤ𝑀))
13 uzss 9616 . . . . . . 7 (𝐽 ∈ (ℤ𝑀) → (ℤ𝐽) ⊆ (ℤ𝑀))
1411, 12, 133syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝐽) ⊆ (ℤ𝑀))
157, 14eqssd 3197 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑀) = (ℤ𝐽))
16 eluzel2 9600 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1716adantr 276 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ ℤ)
18 uz11 9618 . . . . . 6 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
1917, 18syl 14 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2015, 19mpbid 147 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 = 𝐽)
21 eluzfz2 10101 . . . . . . . . 9 (𝐾 ∈ (ℤ𝐽) → 𝐾 ∈ (𝐽...𝐾))
224, 8, 213syl 17 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐾 ∈ (𝐽...𝐾))
2322, 3eleqtrrd 2273 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐾 ∈ (𝑀...𝑁))
24 elfzuz3 10091 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
25 uzss 9616 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → (ℤ𝑁) ⊆ (ℤ𝐾))
2623, 24, 253syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑁) ⊆ (ℤ𝐾))
27 eluzfz2 10101 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2827adantr 276 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ (𝑀...𝑁))
2928, 3eleqtrd 2272 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ (𝐽...𝐾))
30 elfzuz3 10091 . . . . . . 7 (𝑁 ∈ (𝐽...𝐾) → 𝐾 ∈ (ℤ𝑁))
31 uzss 9616 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
3229, 30, 313syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝐾) ⊆ (ℤ𝑁))
3326, 32eqssd 3197 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑁) = (ℤ𝐾))
34 eluzelz 9604 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3534adantr 276 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ ℤ)
36 uz11 9618 . . . . . 6 (𝑁 ∈ ℤ → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
3735, 36syl 14 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
3833, 37mpbid 147 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 = 𝐾)
3920, 38jca 306 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (𝑀 = 𝐽𝑁 = 𝐾))
4039ex 115 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) → (𝑀 = 𝐽𝑁 = 𝐾)))
41 oveq12 5928 . 2 ((𝑀 = 𝐽𝑁 = 𝐾) → (𝑀...𝑁) = (𝐽...𝐾))
4240, 41impbid1 142 1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wss 3154  cfv 5255  (class class class)co 5919  cz 9320  cuz 9595  ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-apti 7989
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-neg 8195  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  fz0to4untppr  10193  2ffzeq  10210  gsumfzval  12977  gsumval2  12983
  Copyright terms: Public domain W3C validator