ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzopth GIF version

Theorem fzopth 10153
Description: A finite set of sequential integers can represent an ordered pair. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzopth (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))

Proof of Theorem fzopth
StepHypRef Expression
1 eluzfz1 10123 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
21adantr 276 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ (𝑀...𝑁))
3 simpr 110 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (𝑀...𝑁) = (𝐽...𝐾))
42, 3eleqtrd 2275 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ (𝐽...𝐾))
5 elfzuz 10113 . . . . . . 7 (𝑀 ∈ (𝐽...𝐾) → 𝑀 ∈ (ℤ𝐽))
6 uzss 9639 . . . . . . 7 (𝑀 ∈ (ℤ𝐽) → (ℤ𝑀) ⊆ (ℤ𝐽))
74, 5, 63syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑀) ⊆ (ℤ𝐽))
8 elfzuz2 10121 . . . . . . . . 9 (𝑀 ∈ (𝐽...𝐾) → 𝐾 ∈ (ℤ𝐽))
9 eluzfz1 10123 . . . . . . . . 9 (𝐾 ∈ (ℤ𝐽) → 𝐽 ∈ (𝐽...𝐾))
104, 8, 93syl 17 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐽 ∈ (𝐽...𝐾))
1110, 3eleqtrrd 2276 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐽 ∈ (𝑀...𝑁))
12 elfzuz 10113 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ (ℤ𝑀))
13 uzss 9639 . . . . . . 7 (𝐽 ∈ (ℤ𝑀) → (ℤ𝐽) ⊆ (ℤ𝑀))
1411, 12, 133syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝐽) ⊆ (ℤ𝑀))
157, 14eqssd 3201 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑀) = (ℤ𝐽))
16 eluzel2 9623 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1716adantr 276 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ ℤ)
18 uz11 9641 . . . . . 6 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
1917, 18syl 14 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2015, 19mpbid 147 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 = 𝐽)
21 eluzfz2 10124 . . . . . . . . 9 (𝐾 ∈ (ℤ𝐽) → 𝐾 ∈ (𝐽...𝐾))
224, 8, 213syl 17 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐾 ∈ (𝐽...𝐾))
2322, 3eleqtrrd 2276 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐾 ∈ (𝑀...𝑁))
24 elfzuz3 10114 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
25 uzss 9639 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → (ℤ𝑁) ⊆ (ℤ𝐾))
2623, 24, 253syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑁) ⊆ (ℤ𝐾))
27 eluzfz2 10124 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2827adantr 276 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ (𝑀...𝑁))
2928, 3eleqtrd 2275 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ (𝐽...𝐾))
30 elfzuz3 10114 . . . . . . 7 (𝑁 ∈ (𝐽...𝐾) → 𝐾 ∈ (ℤ𝑁))
31 uzss 9639 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
3229, 30, 313syl 17 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝐾) ⊆ (ℤ𝑁))
3326, 32eqssd 3201 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑁) = (ℤ𝐾))
34 eluzelz 9627 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3534adantr 276 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ ℤ)
36 uz11 9641 . . . . . 6 (𝑁 ∈ ℤ → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
3735, 36syl 14 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
3833, 37mpbid 147 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 = 𝐾)
3920, 38jca 306 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (𝑀 = 𝐽𝑁 = 𝐾))
4039ex 115 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) → (𝑀 = 𝐽𝑁 = 𝐾)))
41 oveq12 5934 . 2 ((𝑀 = 𝐽𝑁 = 𝐾) → (𝑀...𝑁) = (𝐽...𝐾))
4240, 41impbid1 142 1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wss 3157  cfv 5259  (class class class)co 5925  cz 9343  cuz 9618  ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-apti 8011
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-neg 8217  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  fz0to4untppr  10216  2ffzeq  10233  gsumfzval  13093  gsumval2  13099
  Copyright terms: Public domain W3C validator