ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzuz3 Unicode version

Theorem elfzuz3 10024
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz3  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)

Proof of Theorem elfzuz3
StepHypRef Expression
1 elfzuzb 10021 . 2  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )
21simprbi 275 1  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148   ` cfv 5218  (class class class)co 5877   ZZ>=cuz 9530   ...cfz 10010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-neg 8133  df-z 9256  df-uz 9531  df-fz 10011
This theorem is referenced by:  elfzel2  10025  elfzle2  10030  peano2fzr  10039  fzsplit2  10052  fzsplit  10053  fznn0sub  10059  fzopth  10063  fzss1  10065  fzss2  10066  fzp1elp1  10077  fzosplit  10179  fzoend  10224  fzofzp1b  10230  seq3fveq2  10471  monoord  10478  iseqf1olemnab  10490  seq3f1olemqsum  10502  seq3id2  10511  seq3z  10513  bcval5  10745  seq3coll  10824  fisum0diag2  11457  pcbc  12351
  Copyright terms: Public domain W3C validator