Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzuz3 | Unicode version |
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuz3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuzb 9904 | . 2 | |
2 | 1 | simprbi 273 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 cfv 5167 (class class class)co 5818 cuz 9422 cfz 9894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-neg 8032 df-z 9151 df-uz 9423 df-fz 9895 |
This theorem is referenced by: elfzel2 9908 elfzle2 9912 peano2fzr 9921 fzsplit2 9934 fzsplit 9935 fznn0sub 9941 fzopth 9945 fzss1 9947 fzss2 9948 fzp1elp1 9959 fzosplit 10058 fzoend 10103 fzofzp1b 10109 seq3fveq2 10350 monoord 10357 iseqf1olemnab 10369 seq3f1olemqsum 10381 seq3id2 10390 seq3z 10392 bcval5 10619 seq3coll 10695 fisum0diag2 11326 |
Copyright terms: Public domain | W3C validator |