ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzuz3 Unicode version

Theorem elfzuz3 9696
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz3  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)

Proof of Theorem elfzuz3
StepHypRef Expression
1 elfzuzb 9693 . 2  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )
21simprbi 271 1  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1463   ` cfv 5081  (class class class)co 5728   ZZ>=cuz 9228   ...cfz 9683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-setind 4412  ax-cnex 7636  ax-resscn 7637
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-ov 5731  df-oprab 5732  df-mpo 5733  df-neg 7859  df-z 8959  df-uz 9229  df-fz 9684
This theorem is referenced by:  elfzel2  9697  elfzle2  9701  peano2fzr  9710  fzsplit2  9723  fzsplit  9724  fznn0sub  9730  fzopth  9734  fzss1  9736  fzss2  9737  fzp1elp1  9748  fzosplit  9847  fzoend  9892  fzofzp1b  9898  seq3fveq2  10135  monoord  10142  iseqf1olemnab  10154  seq3f1olemqsum  10166  seq3id2  10175  seq3z  10177  bcval5  10402  seq3coll  10478  fisum0diag2  11108
  Copyright terms: Public domain W3C validator