ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzuz3 Unicode version

Theorem elfzuz3 10146
Description: Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuz3  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)

Proof of Theorem elfzuz3
StepHypRef Expression
1 elfzuzb 10143 . 2  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )
21simprbi 275 1  |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   ` cfv 5272  (class class class)co 5946   ZZ>=cuz 9650   ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-setind 4586  ax-cnex 8018  ax-resscn 8019
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-neg 8248  df-z 9375  df-uz 9651  df-fz 10133
This theorem is referenced by:  elfzel2  10147  elfzle2  10152  peano2fzr  10161  fzsplit2  10174  fzsplit  10175  fznn0sub  10181  fzopth  10185  fzss1  10187  fzss2  10188  fzp1elp1  10199  fzosplit  10303  fzoend  10353  fzofzp1b  10359  seq3fveq2  10622  seqfveq2g  10624  monoord  10632  seqsplitg  10636  iseqf1olemnab  10648  seq3f1olemqsum  10660  seqf1oglem2  10667  seq3id2  10673  seq3z  10675  seqhomog  10677  bcval5  10910  seq3coll  10989  swrdval2  11107  pfxres  11135  pfxf  11136  fisum0diag2  11791  pcbc  12707  dvdsppwf1o  15494
  Copyright terms: Public domain W3C validator