ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghminv Unicode version

Theorem ghminv 13323
Description: A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghminv.b  |-  B  =  ( Base `  S
)
ghminv.y  |-  M  =  ( invg `  S )
ghminv.z  |-  N  =  ( invg `  T )
Assertion
Ref Expression
ghminv  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  ( M `  X ) )  =  ( N `  ( F `  X )
) )

Proof of Theorem ghminv
StepHypRef Expression
1 ghmgrp1 13318 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
2 ghminv.b . . . . . . 7  |-  B  =  ( Base `  S
)
3 eqid 2193 . . . . . . 7  |-  ( +g  `  S )  =  ( +g  `  S )
4 eqid 2193 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
5 ghminv.y . . . . . . 7  |-  M  =  ( invg `  S )
62, 3, 4, 5grprinv 13126 . . . . . 6  |-  ( ( S  e.  Grp  /\  X  e.  B )  ->  ( X ( +g  `  S ) ( M `
 X ) )  =  ( 0g `  S ) )
71, 6sylan 283 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( X ( +g  `  S
) ( M `  X ) )  =  ( 0g `  S
) )
87fveq2d 5559 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  ( X
( +g  `  S ) ( M `  X
) ) )  =  ( F `  ( 0g `  S ) ) )
92, 5grpinvcl 13123 . . . . . 6  |-  ( ( S  e.  Grp  /\  X  e.  B )  ->  ( M `  X
)  e.  B )
101, 9sylan 283 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( M `  X )  e.  B )
11 eqid 2193 . . . . . 6  |-  ( +g  `  T )  =  ( +g  `  T )
122, 3, 11ghmlin 13321 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B  /\  ( M `  X )  e.  B )  ->  ( F `  ( X
( +g  `  S ) ( M `  X
) ) )  =  ( ( F `  X ) ( +g  `  T ) ( F `
 ( M `  X ) ) ) )
1310, 12mpd3an3 1349 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  ( X
( +g  `  S ) ( M `  X
) ) )  =  ( ( F `  X ) ( +g  `  T ) ( F `
 ( M `  X ) ) ) )
14 eqid 2193 . . . . . 6  |-  ( 0g
`  T )  =  ( 0g `  T
)
154, 14ghmid 13322 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
1615adantr 276 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  T
) )
178, 13, 163eqtr3d 2234 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  (
( F `  X
) ( +g  `  T
) ( F `  ( M `  X ) ) )  =  ( 0g `  T ) )
18 ghmgrp2 13319 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
1918adantr 276 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  T  e.  Grp )
20 eqid 2193 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
212, 20ghmf 13320 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  F : B
--> ( Base `  T
) )
2221ffvelcdmda 5694 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  X )  e.  ( Base `  T
) )
2321adantr 276 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  F : B --> ( Base `  T
) )
2423, 10ffvelcdmd 5695 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  ( M `  X ) )  e.  ( Base `  T
) )
25 ghminv.z . . . . 5  |-  N  =  ( invg `  T )
2620, 11, 14, 25grpinvid1 13127 . . . 4  |-  ( ( T  e.  Grp  /\  ( F `  X )  e.  ( Base `  T
)  /\  ( F `  ( M `  X
) )  e.  (
Base `  T )
)  ->  ( ( N `  ( F `  X ) )  =  ( F `  ( M `  X )
)  <->  ( ( F `
 X ) ( +g  `  T ) ( F `  ( M `  X )
) )  =  ( 0g `  T ) ) )
2719, 22, 24, 26syl3anc 1249 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  (
( N `  ( F `  X )
)  =  ( F `
 ( M `  X ) )  <->  ( ( F `  X )
( +g  `  T ) ( F `  ( M `  X )
) )  =  ( 0g `  T ) ) )
2817, 27mpbird 167 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( N `  ( F `  X ) )  =  ( F `  ( M `  X )
) )
2928eqcomd 2199 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  ( M `  X ) )  =  ( N `  ( F `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   -->wf 5251   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   0gc0g 12870   Grpcgrp 13075   invgcminusg 13076    GrpHom cghm 13313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-ghm 13314
This theorem is referenced by:  ghmsub  13324  ghmmulg  13329  ghmrn  13330  ghmpreima  13339  ghmeql  13340
  Copyright terms: Public domain W3C validator