ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghminv Unicode version

Theorem ghminv 13701
Description: A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghminv.b  |-  B  =  ( Base `  S
)
ghminv.y  |-  M  =  ( invg `  S )
ghminv.z  |-  N  =  ( invg `  T )
Assertion
Ref Expression
ghminv  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  ( M `  X ) )  =  ( N `  ( F `  X )
) )

Proof of Theorem ghminv
StepHypRef Expression
1 ghmgrp1 13696 . . . . . 6  |-  ( F  e.  ( S  GrpHom  T )  ->  S  e.  Grp )
2 ghminv.b . . . . . . 7  |-  B  =  ( Base `  S
)
3 eqid 2207 . . . . . . 7  |-  ( +g  `  S )  =  ( +g  `  S )
4 eqid 2207 . . . . . . 7  |-  ( 0g
`  S )  =  ( 0g `  S
)
5 ghminv.y . . . . . . 7  |-  M  =  ( invg `  S )
62, 3, 4, 5grprinv 13498 . . . . . 6  |-  ( ( S  e.  Grp  /\  X  e.  B )  ->  ( X ( +g  `  S ) ( M `
 X ) )  =  ( 0g `  S ) )
71, 6sylan 283 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( X ( +g  `  S
) ( M `  X ) )  =  ( 0g `  S
) )
87fveq2d 5603 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  ( X
( +g  `  S ) ( M `  X
) ) )  =  ( F `  ( 0g `  S ) ) )
92, 5grpinvcl 13495 . . . . . 6  |-  ( ( S  e.  Grp  /\  X  e.  B )  ->  ( M `  X
)  e.  B )
101, 9sylan 283 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( M `  X )  e.  B )
11 eqid 2207 . . . . . 6  |-  ( +g  `  T )  =  ( +g  `  T )
122, 3, 11ghmlin 13699 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B  /\  ( M `  X )  e.  B )  ->  ( F `  ( X
( +g  `  S ) ( M `  X
) ) )  =  ( ( F `  X ) ( +g  `  T ) ( F `
 ( M `  X ) ) ) )
1310, 12mpd3an3 1351 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  ( X
( +g  `  S ) ( M `  X
) ) )  =  ( ( F `  X ) ( +g  `  T ) ( F `
 ( M `  X ) ) ) )
14 eqid 2207 . . . . . 6  |-  ( 0g
`  T )  =  ( 0g `  T
)
154, 14ghmid 13700 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F `  ( 0g `  S
) )  =  ( 0g `  T ) )
1615adantr 276 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  ( 0g `  S ) )  =  ( 0g `  T
) )
178, 13, 163eqtr3d 2248 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  (
( F `  X
) ( +g  `  T
) ( F `  ( M `  X ) ) )  =  ( 0g `  T ) )
18 ghmgrp2 13697 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  T  e.  Grp )
1918adantr 276 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  T  e.  Grp )
20 eqid 2207 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
212, 20ghmf 13698 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  ->  F : B
--> ( Base `  T
) )
2221ffvelcdmda 5738 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  X )  e.  ( Base `  T
) )
2321adantr 276 . . . . 5  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  F : B --> ( Base `  T
) )
2423, 10ffvelcdmd 5739 . . . 4  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  ( M `  X ) )  e.  ( Base `  T
) )
25 ghminv.z . . . . 5  |-  N  =  ( invg `  T )
2620, 11, 14, 25grpinvid1 13499 . . . 4  |-  ( ( T  e.  Grp  /\  ( F `  X )  e.  ( Base `  T
)  /\  ( F `  ( M `  X
) )  e.  (
Base `  T )
)  ->  ( ( N `  ( F `  X ) )  =  ( F `  ( M `  X )
)  <->  ( ( F `
 X ) ( +g  `  T ) ( F `  ( M `  X )
) )  =  ( 0g `  T ) ) )
2719, 22, 24, 26syl3anc 1250 . . 3  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  (
( N `  ( F `  X )
)  =  ( F `
 ( M `  X ) )  <->  ( ( F `  X )
( +g  `  T ) ( F `  ( M `  X )
) )  =  ( 0g `  T ) ) )
2817, 27mpbird 167 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( N `  ( F `  X ) )  =  ( F `  ( M `  X )
) )
2928eqcomd 2213 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  X  e.  B )  ->  ( F `  ( M `  X ) )  =  ( N `  ( F `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   -->wf 5286   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203   Grpcgrp 13447   invgcminusg 13448    GrpHom cghm 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-ghm 13692
This theorem is referenced by:  ghmsub  13702  ghmmulg  13707  ghmrn  13708  ghmpreima  13717  ghmeql  13718
  Copyright terms: Public domain W3C validator