ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmf Unicode version

Theorem ghmf 13616
Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmf.x  |-  X  =  ( Base `  S
)
ghmf.y  |-  Y  =  ( Base `  T
)
Assertion
Ref Expression
ghmf  |-  ( F  e.  ( S  GrpHom  T )  ->  F : X
--> Y )

Proof of Theorem ghmf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmf.x . . . 4  |-  X  =  ( Base `  S
)
2 ghmf.y . . . 4  |-  Y  =  ( Base `  T
)
3 eqid 2205 . . . 4  |-  ( +g  `  S )  =  ( +g  `  S )
4 eqid 2205 . . . 4  |-  ( +g  `  T )  =  ( +g  `  T )
51, 2, 3, 4isghm 13612 . . 3  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> Y  /\  A. y  e.  X  A. x  e.  X  ( F `  ( y
( +g  `  S ) x ) )  =  ( ( F `  y ) ( +g  `  T ) ( F `
 x ) ) ) ) )
65simprbi 275 . 2  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X --> Y  /\  A. y  e.  X  A. x  e.  X  ( F `  ( y
( +g  `  S ) x ) )  =  ( ( F `  y ) ( +g  `  T ) ( F `
 x ) ) ) )
76simpld 112 1  |-  ( F  e.  ( S  GrpHom  T )  ->  F : X
--> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   -->wf 5268   ` cfv 5272  (class class class)co 5946   Basecbs 12865   +g cplusg 12942   Grpcgrp 13365    GrpHom cghm 13609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-inn 9039  df-ndx 12868  df-slot 12869  df-base 12871  df-ghm 13610
This theorem is referenced by:  ghmid  13618  ghminv  13619  ghmsub  13620  ghmmhm  13622  ghmmulg  13625  ghmrn  13626  resghm  13629  ghmpreima  13635  ghmeql  13636  ghmnsgima  13637  ghmnsgpreima  13638  ghmeqker  13640  ghmf1  13642  kerf1ghm  13643  ghmf1o  13644  rhmf  13958  isrhm2d  13960
  Copyright terms: Public domain W3C validator