| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmf | Unicode version | ||
| Description: A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmf.x |
|
| ghmf.y |
|
| Ref | Expression |
|---|---|
| ghmf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmf.x |
. . . 4
| |
| 2 | ghmf.y |
. . . 4
| |
| 3 | eqid 2229 |
. . . 4
| |
| 4 | eqid 2229 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | isghm 13780 |
. . 3
|
| 6 | 5 | simprbi 275 |
. 2
|
| 7 | 6 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-inn 9111 df-ndx 13035 df-slot 13036 df-base 13038 df-ghm 13778 |
| This theorem is referenced by: ghmid 13786 ghminv 13787 ghmsub 13788 ghmmhm 13790 ghmmulg 13793 ghmrn 13794 resghm 13797 ghmpreima 13803 ghmeql 13804 ghmnsgima 13805 ghmnsgpreima 13806 ghmeqker 13808 ghmf1 13810 kerf1ghm 13811 ghmf1o 13812 rhmf 14127 isrhm2d 14129 |
| Copyright terms: Public domain | W3C validator |