| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmmulg | Unicode version | ||
| Description: A group homomorphism preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| ghmmulg.b |
|
| ghmmulg.s |
|
| ghmmulg.t |
|
| Ref | Expression |
|---|---|
| ghmmulg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmhm 13459 |
. . . . . 6
| |
| 2 | ghmmulg.b |
. . . . . . 7
| |
| 3 | ghmmulg.s |
. . . . . . 7
| |
| 4 | ghmmulg.t |
. . . . . . 7
| |
| 5 | 2, 3, 4 | mhmmulg 13369 |
. . . . . 6
|
| 6 | 1, 5 | syl3an1 1282 |
. . . . 5
|
| 7 | 6 | 3expa 1205 |
. . . 4
|
| 8 | 7 | an32s 568 |
. . 3
|
| 9 | 8 | 3adantl2 1156 |
. 2
|
| 10 | simpl1 1002 |
. . . . . . . 8
| |
| 11 | 10, 1 | syl 14 |
. . . . . . 7
|
| 12 | nnnn0 9273 |
. . . . . . . 8
| |
| 13 | 12 | ad2antll 491 |
. . . . . . 7
|
| 14 | simpl3 1004 |
. . . . . . 7
| |
| 15 | 2, 3, 4 | mhmmulg 13369 |
. . . . . . 7
|
| 16 | 11, 13, 14, 15 | syl3anc 1249 |
. . . . . 6
|
| 17 | 16 | fveq2d 5565 |
. . . . 5
|
| 18 | ghmgrp1 13451 |
. . . . . . . 8
| |
| 19 | 10, 18 | syl 14 |
. . . . . . 7
|
| 20 | nnz 9362 |
. . . . . . . 8
| |
| 21 | 20 | ad2antll 491 |
. . . . . . 7
|
| 22 | 2, 3 | mulgcl 13345 |
. . . . . . 7
|
| 23 | 19, 21, 14, 22 | syl3anc 1249 |
. . . . . 6
|
| 24 | eqid 2196 |
. . . . . . 7
| |
| 25 | eqid 2196 |
. . . . . . 7
| |
| 26 | 2, 24, 25 | ghminv 13456 |
. . . . . 6
|
| 27 | 10, 23, 26 | syl2anc 411 |
. . . . 5
|
| 28 | ghmgrp2 13452 |
. . . . . . 7
| |
| 29 | 10, 28 | syl 14 |
. . . . . 6
|
| 30 | eqid 2196 |
. . . . . . . . 9
| |
| 31 | 2, 30 | ghmf 13453 |
. . . . . . . 8
|
| 32 | 10, 31 | syl 14 |
. . . . . . 7
|
| 33 | 32, 14 | ffvelcdmd 5701 |
. . . . . 6
|
| 34 | 30, 4, 25 | mulgneg 13346 |
. . . . . 6
|
| 35 | 29, 21, 33, 34 | syl3anc 1249 |
. . . . 5
|
| 36 | 17, 27, 35 | 3eqtr4d 2239 |
. . . 4
|
| 37 | 2, 3, 24 | mulgneg 13346 |
. . . . . . 7
|
| 38 | 19, 21, 14, 37 | syl3anc 1249 |
. . . . . 6
|
| 39 | simprl 529 |
. . . . . . . . 9
| |
| 40 | 39 | recnd 8072 |
. . . . . . . 8
|
| 41 | 40 | negnegd 8345 |
. . . . . . 7
|
| 42 | 41 | oveq1d 5940 |
. . . . . 6
|
| 43 | 38, 42 | eqtr3d 2231 |
. . . . 5
|
| 44 | 43 | fveq2d 5565 |
. . . 4
|
| 45 | 36, 44 | eqtr3d 2231 |
. . 3
|
| 46 | 41 | oveq1d 5940 |
. . 3
|
| 47 | 45, 46 | eqtr3d 2231 |
. 2
|
| 48 | simp2 1000 |
. . 3
| |
| 49 | elznn0nn 9357 |
. . 3
| |
| 50 | 48, 49 | sylib 122 |
. 2
|
| 51 | 9, 47, 50 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-map 6718 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-2 9066 df-n0 9267 df-z 9344 df-uz 9619 df-seqfrec 10557 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-mhm 13161 df-grp 13205 df-minusg 13206 df-mulg 13326 df-ghm 13447 |
| This theorem is referenced by: mulgrhm2 14242 |
| Copyright terms: Public domain | W3C validator |