ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmmulg Unicode version

Theorem ghmmulg 13188
Description: A group homomorphism preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
ghmmulg.b  |-  B  =  ( Base `  G
)
ghmmulg.s  |-  .x.  =  (.g
`  G )
ghmmulg.t  |-  .X.  =  (.g
`  H )
Assertion
Ref Expression
ghmmulg  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )

Proof of Theorem ghmmulg
StepHypRef Expression
1 ghmmhm 13185 . . . . . 6  |-  ( F  e.  ( G  GrpHom  H )  ->  F  e.  ( G MndHom  H ) )
2 ghmmulg.b . . . . . . 7  |-  B  =  ( Base `  G
)
3 ghmmulg.s . . . . . . 7  |-  .x.  =  (.g
`  G )
4 ghmmulg.t . . . . . . 7  |-  .X.  =  (.g
`  H )
52, 3, 4mhmmulg 13096 . . . . . 6  |-  ( ( F  e.  ( G MndHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
61, 5syl3an1 1282 . . . . 5  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
763expa 1205 . . . 4  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  NN0 )  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X ) ) )
87an32s 568 . . 3  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  X  e.  B )  /\  N  e.  NN0 )  ->  ( F `  ( N  .x.  X ) )  =  ( N 
.X.  ( F `  X ) ) )
983adantl2 1156 . 2  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  N  e.  NN0 )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
10 simpl1 1002 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  F  e.  ( G  GrpHom  H ) )
1110, 1syl 14 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  F  e.  ( G MndHom  H ) )
12 nnnn0 9208 . . . . . . . 8  |-  ( -u N  e.  NN  ->  -u N  e.  NN0 )
1312ad2antll 491 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
14 simpl3 1004 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  X  e.  B )
152, 3, 4mhmmulg 13096 . . . . . . 7  |-  ( ( F  e.  ( G MndHom  H )  /\  -u N  e.  NN0  /\  X  e.  B )  ->  ( F `  ( -u N  .x.  X ) )  =  ( -u N  .X.  ( F `  X ) ) )
1611, 13, 14, 15syl3anc 1249 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( F `  ( -u N  .x.  X ) )  =  ( -u N  .X.  ( F `  X ) ) )
1716fveq2d 5535 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( invg `  H ) `  ( F `  ( -u N  .x.  X ) ) )  =  ( ( invg `  H ) `
 ( -u N  .X.  ( F `  X
) ) ) )
18 ghmgrp1 13177 . . . . . . . 8  |-  ( F  e.  ( G  GrpHom  H )  ->  G  e.  Grp )
1910, 18syl 14 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  G  e.  Grp )
20 nnz 9297 . . . . . . . 8  |-  ( -u N  e.  NN  ->  -u N  e.  ZZ )
2120ad2antll 491 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
222, 3mulgcl 13072 . . . . . . 7  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u N  .x.  X )  e.  B
)
2319, 21, 14, 22syl3anc 1249 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u N  .x.  X
)  e.  B )
24 eqid 2189 . . . . . . 7  |-  ( invg `  G )  =  ( invg `  G )
25 eqid 2189 . . . . . . 7  |-  ( invg `  H )  =  ( invg `  H )
262, 24, 25ghminv 13182 . . . . . 6  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  ( -u N  .x.  X )  e.  B )  -> 
( F `  (
( invg `  G ) `  ( -u N  .x.  X ) ) )  =  ( ( invg `  H ) `  ( F `  ( -u N  .x.  X ) ) ) )
2710, 23, 26syl2anc 411 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( F `  (
( invg `  G ) `  ( -u N  .x.  X ) ) )  =  ( ( invg `  H ) `  ( F `  ( -u N  .x.  X ) ) ) )
28 ghmgrp2 13178 . . . . . . 7  |-  ( F  e.  ( G  GrpHom  H )  ->  H  e.  Grp )
2910, 28syl 14 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  H  e.  Grp )
30 eqid 2189 . . . . . . . . 9  |-  ( Base `  H )  =  (
Base `  H )
312, 30ghmf 13179 . . . . . . . 8  |-  ( F  e.  ( G  GrpHom  H )  ->  F : B
--> ( Base `  H
) )
3210, 31syl 14 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  F : B --> ( Base `  H ) )
3332, 14ffvelcdmd 5669 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( F `  X
)  e.  ( Base `  H ) )
3430, 4, 25mulgneg 13073 . . . . . 6  |-  ( ( H  e.  Grp  /\  -u N  e.  ZZ  /\  ( F `  X )  e.  ( Base `  H
) )  ->  ( -u -u N  .X.  ( F `
 X ) )  =  ( ( invg `  H ) `
 ( -u N  .X.  ( F `  X
) ) ) )
3529, 21, 33, 34syl3anc 1249 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u -u N  .X.  ( F `  X )
)  =  ( ( invg `  H
) `  ( -u N  .X.  ( F `  X
) ) ) )
3617, 27, 353eqtr4d 2232 . . . 4  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( F `  (
( invg `  G ) `  ( -u N  .x.  X ) ) )  =  (
-u -u N  .X.  ( F `  X )
) )
372, 3, 24mulgneg 13073 . . . . . . 7  |-  ( ( G  e.  Grp  /\  -u N  e.  ZZ  /\  X  e.  B )  ->  ( -u -u N  .x.  X )  =  ( ( invg `  G ) `  ( -u N  .x.  X ) ) )
3819, 21, 14, 37syl3anc 1249 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u -u N  .x.  X
)  =  ( ( invg `  G
) `  ( -u N  .x.  X ) ) )
39 simprl 529 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
4039recnd 8011 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
4140negnegd 8284 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u -u N  =  N
)
4241oveq1d 5907 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u -u N  .x.  X
)  =  ( N 
.x.  X ) )
4338, 42eqtr3d 2224 . . . . 5  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( ( invg `  G ) `  ( -u N  .x.  X ) )  =  ( N 
.x.  X ) )
4443fveq2d 5535 . . . 4  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( F `  (
( invg `  G ) `  ( -u N  .x.  X ) ) )  =  ( F `  ( N 
.x.  X ) ) )
4536, 44eqtr3d 2224 . . 3  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u -u N  .X.  ( F `  X )
)  =  ( F `
 ( N  .x.  X ) ) )
4641oveq1d 5907 . . 3  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( -u -u N  .X.  ( F `  X )
)  =  ( N 
.X.  ( F `  X ) ) )
4745, 46eqtr3d 2224 . 2  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  -> 
( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X ) ) )
48 simp2 1000 . . 3  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  ->  N  e.  ZZ )
49 elznn0nn 9292 . . 3  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
5048, 49sylib 122 . 2  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
519, 47, 50mpjaodan 799 1  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( F `  ( N  .x.  X ) )  =  ( N  .X.  ( F `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2160   -->wf 5228   ` cfv 5232  (class class class)co 5892   RRcr 7835   -ucneg 8154   NNcn 8944   NN0cn0 9201   ZZcz 9278   Basecbs 12507   MndHom cmhm 12902   Grpcgrp 12938   invgcminusg 12939  .gcmg 13054    GrpHom cghm 13172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7927  ax-resscn 7928  ax-1cn 7929  ax-1re 7930  ax-icn 7931  ax-addcl 7932  ax-addrcl 7933  ax-mulcl 7934  ax-addcom 7936  ax-addass 7938  ax-distr 7940  ax-i2m1 7941  ax-0lt1 7942  ax-0id 7944  ax-rnegex 7945  ax-cnre 7947  ax-pre-ltirr 7948  ax-pre-ltwlin 7949  ax-pre-lttrn 7950  ax-pre-ltadd 7952
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240  df-riota 5848  df-ov 5895  df-oprab 5896  df-mpo 5897  df-1st 6160  df-2nd 6161  df-recs 6325  df-frec 6411  df-map 6671  df-pnf 8019  df-mnf 8020  df-xr 8021  df-ltxr 8022  df-le 8023  df-sub 8155  df-neg 8156  df-inn 8945  df-2 9003  df-n0 9202  df-z 9279  df-uz 9554  df-seqfrec 10472  df-ndx 12510  df-slot 12511  df-base 12513  df-plusg 12595  df-0g 12756  df-mgm 12825  df-sgrp 12858  df-mnd 12871  df-mhm 12904  df-grp 12941  df-minusg 12942  df-mulg 13055  df-ghm 13173
This theorem is referenced by:  mulgrhm2  13901
  Copyright terms: Public domain W3C validator