| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmmulg | Unicode version | ||
| Description: A group homomorphism preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| Ref | Expression |
|---|---|
| ghmmulg.b |
|
| ghmmulg.s |
|
| ghmmulg.t |
|
| Ref | Expression |
|---|---|
| ghmmulg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmhm 13790 |
. . . . . 6
| |
| 2 | ghmmulg.b |
. . . . . . 7
| |
| 3 | ghmmulg.s |
. . . . . . 7
| |
| 4 | ghmmulg.t |
. . . . . . 7
| |
| 5 | 2, 3, 4 | mhmmulg 13700 |
. . . . . 6
|
| 6 | 1, 5 | syl3an1 1304 |
. . . . 5
|
| 7 | 6 | 3expa 1227 |
. . . 4
|
| 8 | 7 | an32s 568 |
. . 3
|
| 9 | 8 | 3adantl2 1178 |
. 2
|
| 10 | simpl1 1024 |
. . . . . . . 8
| |
| 11 | 10, 1 | syl 14 |
. . . . . . 7
|
| 12 | nnnn0 9376 |
. . . . . . . 8
| |
| 13 | 12 | ad2antll 491 |
. . . . . . 7
|
| 14 | simpl3 1026 |
. . . . . . 7
| |
| 15 | 2, 3, 4 | mhmmulg 13700 |
. . . . . . 7
|
| 16 | 11, 13, 14, 15 | syl3anc 1271 |
. . . . . 6
|
| 17 | 16 | fveq2d 5631 |
. . . . 5
|
| 18 | ghmgrp1 13782 |
. . . . . . . 8
| |
| 19 | 10, 18 | syl 14 |
. . . . . . 7
|
| 20 | nnz 9465 |
. . . . . . . 8
| |
| 21 | 20 | ad2antll 491 |
. . . . . . 7
|
| 22 | 2, 3 | mulgcl 13676 |
. . . . . . 7
|
| 23 | 19, 21, 14, 22 | syl3anc 1271 |
. . . . . 6
|
| 24 | eqid 2229 |
. . . . . . 7
| |
| 25 | eqid 2229 |
. . . . . . 7
| |
| 26 | 2, 24, 25 | ghminv 13787 |
. . . . . 6
|
| 27 | 10, 23, 26 | syl2anc 411 |
. . . . 5
|
| 28 | ghmgrp2 13783 |
. . . . . . 7
| |
| 29 | 10, 28 | syl 14 |
. . . . . 6
|
| 30 | eqid 2229 |
. . . . . . . . 9
| |
| 31 | 2, 30 | ghmf 13784 |
. . . . . . . 8
|
| 32 | 10, 31 | syl 14 |
. . . . . . 7
|
| 33 | 32, 14 | ffvelcdmd 5771 |
. . . . . 6
|
| 34 | 30, 4, 25 | mulgneg 13677 |
. . . . . 6
|
| 35 | 29, 21, 33, 34 | syl3anc 1271 |
. . . . 5
|
| 36 | 17, 27, 35 | 3eqtr4d 2272 |
. . . 4
|
| 37 | 2, 3, 24 | mulgneg 13677 |
. . . . . . 7
|
| 38 | 19, 21, 14, 37 | syl3anc 1271 |
. . . . . 6
|
| 39 | simprl 529 |
. . . . . . . . 9
| |
| 40 | 39 | recnd 8175 |
. . . . . . . 8
|
| 41 | 40 | negnegd 8448 |
. . . . . . 7
|
| 42 | 41 | oveq1d 6016 |
. . . . . 6
|
| 43 | 38, 42 | eqtr3d 2264 |
. . . . 5
|
| 44 | 43 | fveq2d 5631 |
. . . 4
|
| 45 | 36, 44 | eqtr3d 2264 |
. . 3
|
| 46 | 41 | oveq1d 6016 |
. . 3
|
| 47 | 45, 46 | eqtr3d 2264 |
. 2
|
| 48 | simp2 1022 |
. . 3
| |
| 49 | elznn0nn 9460 |
. . 3
| |
| 50 | 48, 49 | sylib 122 |
. 2
|
| 51 | 9, 47, 50 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-map 6797 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-2 9169 df-n0 9370 df-z 9447 df-uz 9723 df-seqfrec 10670 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-mhm 13492 df-grp 13536 df-minusg 13537 df-mulg 13657 df-ghm 13778 |
| This theorem is referenced by: mulgrhm2 14574 |
| Copyright terms: Public domain | W3C validator |