ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmgrp2 GIF version

Theorem ghmgrp2 13210
Description: A group homomorphism is only defined when the codomain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmgrp2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)

Proof of Theorem ghmgrp2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2189 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2189 . . . 4 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2189 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2189 . . . 4 (+g𝑇) = (+g𝑇)
51, 2, 3, 4isghm 13207 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑦 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)(𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥)))))
65simplbi 274 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
76simprd 114 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  wral 2468  wf 5234  cfv 5238  (class class class)co 5900  Basecbs 12523  +gcplusg 12600  Grpcgrp 12968   GrpHom cghm 13204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1re 7940  ax-addrcl 7943
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-inn 8955  df-ndx 12526  df-slot 12527  df-base 12529  df-ghm 13205
This theorem is referenced by:  ghmid  13213  ghminv  13214  ghmmhm  13217  ghmmulg  13220  ghmrn  13221  resghm  13224  ghmco  13228  ghmker  13234  ghmeqker  13235  ghmf1  13237  ghmf1o  13239  ghmpropd  13247
  Copyright terms: Public domain W3C validator