ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmlin Unicode version

Theorem ghmlin 13780
Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmlin.x  |-  X  =  ( Base `  S
)
ghmlin.a  |-  .+  =  ( +g  `  S )
ghmlin.b  |-  .+^  =  ( +g  `  T )
Assertion
Ref Expression
ghmlin  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  X  /\  V  e.  X )  ->  ( F `  ( U  .+  V ) )  =  ( ( F `  U )  .+^  ( F `
 V ) ) )

Proof of Theorem ghmlin
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmlin.x . . . . . 6  |-  X  =  ( Base `  S
)
2 eqid 2229 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
3 ghmlin.a . . . . . 6  |-  .+  =  ( +g  `  S )
4 ghmlin.b . . . . . 6  |-  .+^  =  ( +g  `  T )
51, 2, 3, 4isghm 13775 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> ( Base `  T )  /\  A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b ) )  =  ( ( F `  a )  .+^  ( F `
 b ) ) ) ) )
65simprbi 275 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X --> ( Base `  T
)  /\  A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) ) ) )
76simprd 114 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) ) )
8 fvoveq1 6023 . . . . 5  |-  ( a  =  U  ->  ( F `  ( a  .+  b ) )  =  ( F `  ( U  .+  b ) ) )
9 fveq2 5626 . . . . . 6  |-  ( a  =  U  ->  ( F `  a )  =  ( F `  U ) )
109oveq1d 6015 . . . . 5  |-  ( a  =  U  ->  (
( F `  a
)  .+^  ( F `  b ) )  =  ( ( F `  U )  .+^  ( F `
 b ) ) )
118, 10eqeq12d 2244 . . . 4  |-  ( a  =  U  ->  (
( F `  (
a  .+  b )
)  =  ( ( F `  a ) 
.+^  ( F `  b ) )  <->  ( F `  ( U  .+  b
) )  =  ( ( F `  U
)  .+^  ( F `  b ) ) ) )
12 oveq2 6008 . . . . . 6  |-  ( b  =  V  ->  ( U  .+  b )  =  ( U  .+  V
) )
1312fveq2d 5630 . . . . 5  |-  ( b  =  V  ->  ( F `  ( U  .+  b ) )  =  ( F `  ( U  .+  V ) ) )
14 fveq2 5626 . . . . . 6  |-  ( b  =  V  ->  ( F `  b )  =  ( F `  V ) )
1514oveq2d 6016 . . . . 5  |-  ( b  =  V  ->  (
( F `  U
)  .+^  ( F `  b ) )  =  ( ( F `  U )  .+^  ( F `
 V ) ) )
1613, 15eqeq12d 2244 . . . 4  |-  ( b  =  V  ->  (
( F `  ( U  .+  b ) )  =  ( ( F `
 U )  .+^  ( F `  b ) )  <->  ( F `  ( U  .+  V ) )  =  ( ( F `  U ) 
.+^  ( F `  V ) ) ) )
1711, 16rspc2v 2920 . . 3  |-  ( ( U  e.  X  /\  V  e.  X )  ->  ( A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) )  -> 
( F `  ( U  .+  V ) )  =  ( ( F `
 U )  .+^  ( F `  V ) ) ) )
187, 17mpan9 281 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  ( U  e.  X  /\  V  e.  X )
)  ->  ( F `  ( U  .+  V
) )  =  ( ( F `  U
)  .+^  ( F `  V ) ) )
19183impb 1223 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  X  /\  V  e.  X )  ->  ( F `  ( U  .+  V ) )  =  ( ( F `  U )  .+^  ( F `
 V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   -->wf 5313   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105   Grpcgrp 13528    GrpHom cghm 13772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-ghm 13773
This theorem is referenced by:  ghmid  13781  ghminv  13782  ghmsub  13783  ghmmhm  13785  ghmrn  13789  resghm  13792  ghmpreima  13798  ghmnsgima  13800  ghmnsgpreima  13801  ghmf1o  13807  invghm  13861  rhmopp  14134
  Copyright terms: Public domain W3C validator