ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmlin Unicode version

Theorem ghmlin 13669
Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmlin.x  |-  X  =  ( Base `  S
)
ghmlin.a  |-  .+  =  ( +g  `  S )
ghmlin.b  |-  .+^  =  ( +g  `  T )
Assertion
Ref Expression
ghmlin  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  X  /\  V  e.  X )  ->  ( F `  ( U  .+  V ) )  =  ( ( F `  U )  .+^  ( F `
 V ) ) )

Proof of Theorem ghmlin
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmlin.x . . . . . 6  |-  X  =  ( Base `  S
)
2 eqid 2206 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
3 ghmlin.a . . . . . 6  |-  .+  =  ( +g  `  S )
4 ghmlin.b . . . . . 6  |-  .+^  =  ( +g  `  T )
51, 2, 3, 4isghm 13664 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> ( Base `  T )  /\  A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b ) )  =  ( ( F `  a )  .+^  ( F `
 b ) ) ) ) )
65simprbi 275 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X --> ( Base `  T
)  /\  A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) ) ) )
76simprd 114 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) ) )
8 fvoveq1 5985 . . . . 5  |-  ( a  =  U  ->  ( F `  ( a  .+  b ) )  =  ( F `  ( U  .+  b ) ) )
9 fveq2 5594 . . . . . 6  |-  ( a  =  U  ->  ( F `  a )  =  ( F `  U ) )
109oveq1d 5977 . . . . 5  |-  ( a  =  U  ->  (
( F `  a
)  .+^  ( F `  b ) )  =  ( ( F `  U )  .+^  ( F `
 b ) ) )
118, 10eqeq12d 2221 . . . 4  |-  ( a  =  U  ->  (
( F `  (
a  .+  b )
)  =  ( ( F `  a ) 
.+^  ( F `  b ) )  <->  ( F `  ( U  .+  b
) )  =  ( ( F `  U
)  .+^  ( F `  b ) ) ) )
12 oveq2 5970 . . . . . 6  |-  ( b  =  V  ->  ( U  .+  b )  =  ( U  .+  V
) )
1312fveq2d 5598 . . . . 5  |-  ( b  =  V  ->  ( F `  ( U  .+  b ) )  =  ( F `  ( U  .+  V ) ) )
14 fveq2 5594 . . . . . 6  |-  ( b  =  V  ->  ( F `  b )  =  ( F `  V ) )
1514oveq2d 5978 . . . . 5  |-  ( b  =  V  ->  (
( F `  U
)  .+^  ( F `  b ) )  =  ( ( F `  U )  .+^  ( F `
 V ) ) )
1613, 15eqeq12d 2221 . . . 4  |-  ( b  =  V  ->  (
( F `  ( U  .+  b ) )  =  ( ( F `
 U )  .+^  ( F `  b ) )  <->  ( F `  ( U  .+  V ) )  =  ( ( F `  U ) 
.+^  ( F `  V ) ) ) )
1711, 16rspc2v 2894 . . 3  |-  ( ( U  e.  X  /\  V  e.  X )  ->  ( A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) )  -> 
( F `  ( U  .+  V ) )  =  ( ( F `
 U )  .+^  ( F `  V ) ) ) )
187, 17mpan9 281 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  ( U  e.  X  /\  V  e.  X )
)  ->  ( F `  ( U  .+  V
) )  =  ( ( F `  U
)  .+^  ( F `  V ) ) )
19183impb 1202 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  X  /\  V  e.  X )  ->  ( F `  ( U  .+  V ) )  =  ( ( F `  U )  .+^  ( F `
 V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   -->wf 5281   ` cfv 5285  (class class class)co 5962   Basecbs 12917   +g cplusg 12994   Grpcgrp 13417    GrpHom cghm 13661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1re 8049  ax-addrcl 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-inn 9067  df-ndx 12920  df-slot 12921  df-base 12923  df-ghm 13662
This theorem is referenced by:  ghmid  13670  ghminv  13671  ghmsub  13672  ghmmhm  13674  ghmrn  13678  resghm  13681  ghmpreima  13687  ghmnsgima  13689  ghmnsgpreima  13690  ghmf1o  13696  invghm  13750  rhmopp  14023
  Copyright terms: Public domain W3C validator