ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmlin Unicode version

Theorem ghmlin 13555
Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Hypotheses
Ref Expression
ghmlin.x  |-  X  =  ( Base `  S
)
ghmlin.a  |-  .+  =  ( +g  `  S )
ghmlin.b  |-  .+^  =  ( +g  `  T )
Assertion
Ref Expression
ghmlin  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  X  /\  V  e.  X )  ->  ( F `  ( U  .+  V ) )  =  ( ( F `  U )  .+^  ( F `
 V ) ) )

Proof of Theorem ghmlin
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmlin.x . . . . . 6  |-  X  =  ( Base `  S
)
2 eqid 2204 . . . . . 6  |-  ( Base `  T )  =  (
Base `  T )
3 ghmlin.a . . . . . 6  |-  .+  =  ( +g  `  S )
4 ghmlin.b . . . . . 6  |-  .+^  =  ( +g  `  T )
51, 2, 3, 4isghm 13550 . . . . 5  |-  ( F  e.  ( S  GrpHom  T )  <->  ( ( S  e.  Grp  /\  T  e.  Grp )  /\  ( F : X --> ( Base `  T )  /\  A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b ) )  =  ( ( F `  a )  .+^  ( F `
 b ) ) ) ) )
65simprbi 275 . . . 4  |-  ( F  e.  ( S  GrpHom  T )  ->  ( F : X --> ( Base `  T
)  /\  A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) ) ) )
76simprd 114 . . 3  |-  ( F  e.  ( S  GrpHom  T )  ->  A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) ) )
8 fvoveq1 5966 . . . . 5  |-  ( a  =  U  ->  ( F `  ( a  .+  b ) )  =  ( F `  ( U  .+  b ) ) )
9 fveq2 5575 . . . . . 6  |-  ( a  =  U  ->  ( F `  a )  =  ( F `  U ) )
109oveq1d 5958 . . . . 5  |-  ( a  =  U  ->  (
( F `  a
)  .+^  ( F `  b ) )  =  ( ( F `  U )  .+^  ( F `
 b ) ) )
118, 10eqeq12d 2219 . . . 4  |-  ( a  =  U  ->  (
( F `  (
a  .+  b )
)  =  ( ( F `  a ) 
.+^  ( F `  b ) )  <->  ( F `  ( U  .+  b
) )  =  ( ( F `  U
)  .+^  ( F `  b ) ) ) )
12 oveq2 5951 . . . . . 6  |-  ( b  =  V  ->  ( U  .+  b )  =  ( U  .+  V
) )
1312fveq2d 5579 . . . . 5  |-  ( b  =  V  ->  ( F `  ( U  .+  b ) )  =  ( F `  ( U  .+  V ) ) )
14 fveq2 5575 . . . . . 6  |-  ( b  =  V  ->  ( F `  b )  =  ( F `  V ) )
1514oveq2d 5959 . . . . 5  |-  ( b  =  V  ->  (
( F `  U
)  .+^  ( F `  b ) )  =  ( ( F `  U )  .+^  ( F `
 V ) ) )
1613, 15eqeq12d 2219 . . . 4  |-  ( b  =  V  ->  (
( F `  ( U  .+  b ) )  =  ( ( F `
 U )  .+^  ( F `  b ) )  <->  ( F `  ( U  .+  V ) )  =  ( ( F `  U ) 
.+^  ( F `  V ) ) ) )
1711, 16rspc2v 2889 . . 3  |-  ( ( U  e.  X  /\  V  e.  X )  ->  ( A. a  e.  X  A. b  e.  X  ( F `  ( a  .+  b
) )  =  ( ( F `  a
)  .+^  ( F `  b ) )  -> 
( F `  ( U  .+  V ) )  =  ( ( F `
 U )  .+^  ( F `  V ) ) ) )
187, 17mpan9 281 . 2  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  ( U  e.  X  /\  V  e.  X )
)  ->  ( F `  ( U  .+  V
) )  =  ( ( F `  U
)  .+^  ( F `  V ) ) )
19183impb 1201 1  |-  ( ( F  e.  ( S 
GrpHom  T )  /\  U  e.  X  /\  V  e.  X )  ->  ( F `  ( U  .+  V ) )  =  ( ( F `  U )  .+^  ( F `
 V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1372    e. wcel 2175   A.wral 2483   -->wf 5266   ` cfv 5270  (class class class)co 5943   Basecbs 12803   +g cplusg 12880   Grpcgrp 13303    GrpHom cghm 13547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-inn 9036  df-ndx 12806  df-slot 12807  df-base 12809  df-ghm 13548
This theorem is referenced by:  ghmid  13556  ghminv  13557  ghmsub  13558  ghmmhm  13560  ghmrn  13564  resghm  13567  ghmpreima  13573  ghmnsgima  13575  ghmnsgpreima  13576  ghmf1o  13582  invghm  13636  rhmopp  13909
  Copyright terms: Public domain W3C validator