ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgmodid Unicode version

Theorem mulgmodid 13693
Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
mulgmodid.b  |-  B  =  ( Base `  G
)
mulgmodid.o  |-  .0.  =  ( 0g `  G )
mulgmodid.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgmodid  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )

Proof of Theorem mulgmodid
StepHypRef Expression
1 zq 9817 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  QQ )
21adantr 276 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  N  e.  QQ )
3 nnq 9824 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  QQ )
43adantl 277 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  M  e.  QQ )
5 nngt0 9131 . . . . . . 7  |-  ( M  e.  NN  ->  0  <  M )
65adantl 277 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  0  <  M )
7 modqval 10541 . . . . . 6  |-  ( ( N  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  ( N  mod  M )  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M
) ) ) ) )
82, 4, 6, 7syl3anc 1271 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  mod  M
)  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
983ad2ant2 1043 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  mod  M
)  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
109oveq1d 6015 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X
) )
11 zcn 9447 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
1211adantr 276 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  N  e.  CC )
13 nnz 9461 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  ZZ )
1413adantl 277 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  M  e.  ZZ )
15 znq 9815 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  /  M
)  e.  QQ )
1615flqcld 10492 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( |_ `  ( N  /  M ) )  e.  ZZ )
1714, 16zmulcld 9571 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ )
1817zcnd 9566 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  CC )
1912, 18negsubd 8459 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
20193ad2ant2 1043 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
2120oveq1d 6015 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X )  =  ( ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X
) )
22 simp1 1021 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  G  e.  Grp )
23 simpl 109 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  N  e.  ZZ )
24233ad2ant2 1043 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  N  e.  ZZ )
25143ad2ant2 1043 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  M  e.  ZZ )
26163ad2ant2 1043 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( |_ `  ( N  /  M ) )  e.  ZZ )
2725, 26zmulcld 9571 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ )
2827znegcld 9567 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  -u ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ )
29 simpl 109 . . . . 5  |-  ( ( X  e.  B  /\  ( M  .x.  X )  =  .0.  )  ->  X  e.  B )
30293ad2ant3 1044 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  X  e.  B )
31 mulgmodid.b . . . . 5  |-  B  =  ( Base `  G
)
32 mulgmodid.t . . . . 5  |-  .x.  =  (.g
`  G )
33 eqid 2229 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
3431, 32, 33mulgdir 13686 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  -u ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ  /\  X  e.  B ) )  -> 
( ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X )  =  ( ( N 
.x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) ) )
3522, 24, 28, 30, 34syl13anc 1273 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X )  =  ( ( N 
.x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) ) )
3610, 21, 353eqtr2d 2268 . 2  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( ( N 
.x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) ) )
37 nncn 9114 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  CC )
3837adantl 277 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  M  e.  CC )
3916zcnd 9566 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( |_ `  ( N  /  M ) )  e.  CC )
4038, 39mulneg2d 8554 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( M  x.  -u ( |_ `  ( N  /  M ) ) )  =  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )
41403ad2ant2 1043 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( M  x.  -u ( |_ `  ( N  /  M ) ) )  =  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )
4241oveq1d 6015 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( M  x.  -u ( |_ `  ( N  /  M ) ) )  .x.  X )  =  ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) )
43153ad2ant2 1043 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  /  M
)  e.  QQ )
4443flqcld 10492 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( |_ `  ( N  /  M ) )  e.  ZZ )
4544znegcld 9567 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  -u ( |_ `  ( N  /  M ) )  e.  ZZ )
4631, 32mulgassr 13692 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( -u ( |_ `  ( N  /  M
) )  e.  ZZ  /\  M  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  -u ( |_
`  ( N  /  M ) ) ) 
.x.  X )  =  ( -u ( |_
`  ( N  /  M ) )  .x.  ( M  .x.  X ) ) )
4722, 45, 25, 30, 46syl13anc 1273 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( M  x.  -u ( |_ `  ( N  /  M ) ) )  .x.  X )  =  ( -u ( |_ `  ( N  /  M ) )  .x.  ( M  .x.  X ) ) )
48 oveq2 6008 . . . . . . 7  |-  ( ( M  .x.  X )  =  .0.  ->  ( -u ( |_ `  ( N  /  M ) ) 
.x.  ( M  .x.  X ) )  =  ( -u ( |_
`  ( N  /  M ) )  .x.  .0.  ) )
4948adantl 277 . . . . . 6  |-  ( ( X  e.  B  /\  ( M  .x.  X )  =  .0.  )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  ( M  .x.  X ) )  =  ( -u ( |_ `  ( N  /  M ) )  .x.  .0.  ) )
50493ad2ant3 1044 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  ( M  .x.  X ) )  =  ( -u ( |_ `  ( N  /  M ) )  .x.  .0.  ) )
51 mulgmodid.o . . . . . . 7  |-  .0.  =  ( 0g `  G )
5231, 32, 51mulgz 13682 . . . . . 6  |-  ( ( G  e.  Grp  /\  -u ( |_ `  ( N  /  M ) )  e.  ZZ )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  .0.  )  =  .0.  )
5322, 45, 52syl2anc 411 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  .0.  )  =  .0.  )
5447, 50, 533eqtrd 2266 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( M  x.  -u ( |_ `  ( N  /  M ) ) )  .x.  X )  =  .0.  )
5542, 54eqtr3d 2264 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( -u ( M  x.  ( |_ `  ( N  /  M ) ) )  .x.  X )  =  .0.  )
5655oveq2d 6016 . 2  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  .x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M ) ) ) 
.x.  X ) )  =  ( ( N 
.x.  X ) ( +g  `  G )  .0.  ) )
57 id 19 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Grp )
5831, 32mulgcl 13671 . . . 4  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
5957, 23, 29, 58syl3an 1313 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  .x.  X
)  e.  B )
6031, 33, 51grprid 13560 . . 3  |-  ( ( G  e.  Grp  /\  ( N  .x.  X )  e.  B )  -> 
( ( N  .x.  X ) ( +g  `  G )  .0.  )  =  ( N  .x.  X ) )
6122, 59, 60syl2anc 411 . 2  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  .x.  X ) ( +g  `  G )  .0.  )  =  ( N  .x.  X ) )
6236, 56, 613eqtrd 2266 1  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   CCcc 7993   0cc0 7995    + caddc 7998    x. cmul 8000    < clt 8177    - cmin 8313   -ucneg 8314    / cdiv 8815   NNcn 9106   ZZcz 9442   QQcq 9810   |_cfl 10483    mod cmo 10539   Basecbs 13027   +g cplusg 13105   0gc0g 13284   Grpcgrp 13528  .gcmg 13651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-mulg 13652
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator