ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgmodid Unicode version

Theorem mulgmodid 13118
Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
mulgmodid.b  |-  B  =  ( Base `  G
)
mulgmodid.o  |-  .0.  =  ( 0g `  G )
mulgmodid.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgmodid  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )

Proof of Theorem mulgmodid
StepHypRef Expression
1 zq 9658 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  QQ )
21adantr 276 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  N  e.  QQ )
3 nnq 9665 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  QQ )
43adantl 277 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  M  e.  QQ )
5 nngt0 8975 . . . . . . 7  |-  ( M  e.  NN  ->  0  <  M )
65adantl 277 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  0  <  M )
7 modqval 10357 . . . . . 6  |-  ( ( N  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  ( N  mod  M )  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M
) ) ) ) )
82, 4, 6, 7syl3anc 1249 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  mod  M
)  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
983ad2ant2 1021 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  mod  M
)  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
109oveq1d 5912 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X
) )
11 zcn 9289 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
1211adantr 276 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  N  e.  CC )
13 nnz 9303 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  ZZ )
1413adantl 277 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  M  e.  ZZ )
15 znq 9656 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  /  M
)  e.  QQ )
1615flqcld 10310 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( |_ `  ( N  /  M ) )  e.  ZZ )
1714, 16zmulcld 9412 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ )
1817zcnd 9407 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  CC )
1912, 18negsubd 8305 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
20193ad2ant2 1021 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
2120oveq1d 5912 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X )  =  ( ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X
) )
22 simp1 999 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  G  e.  Grp )
23 simpl 109 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  N  e.  ZZ )
24233ad2ant2 1021 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  N  e.  ZZ )
25143ad2ant2 1021 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  M  e.  ZZ )
26163ad2ant2 1021 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( |_ `  ( N  /  M ) )  e.  ZZ )
2725, 26zmulcld 9412 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ )
2827znegcld 9408 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  -u ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ )
29 simpl 109 . . . . 5  |-  ( ( X  e.  B  /\  ( M  .x.  X )  =  .0.  )  ->  X  e.  B )
30293ad2ant3 1022 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  X  e.  B )
31 mulgmodid.b . . . . 5  |-  B  =  ( Base `  G
)
32 mulgmodid.t . . . . 5  |-  .x.  =  (.g
`  G )
33 eqid 2189 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
3431, 32, 33mulgdir 13111 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  -u ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ  /\  X  e.  B ) )  -> 
( ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X )  =  ( ( N 
.x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) ) )
3522, 24, 28, 30, 34syl13anc 1251 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X )  =  ( ( N 
.x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) ) )
3610, 21, 353eqtr2d 2228 . 2  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( ( N 
.x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) ) )
37 nncn 8958 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  CC )
3837adantl 277 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  M  e.  CC )
3916zcnd 9407 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( |_ `  ( N  /  M ) )  e.  CC )
4038, 39mulneg2d 8400 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( M  x.  -u ( |_ `  ( N  /  M ) ) )  =  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )
41403ad2ant2 1021 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( M  x.  -u ( |_ `  ( N  /  M ) ) )  =  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )
4241oveq1d 5912 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( M  x.  -u ( |_ `  ( N  /  M ) ) )  .x.  X )  =  ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) )
43153ad2ant2 1021 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  /  M
)  e.  QQ )
4443flqcld 10310 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( |_ `  ( N  /  M ) )  e.  ZZ )
4544znegcld 9408 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  -u ( |_ `  ( N  /  M ) )  e.  ZZ )
4631, 32mulgassr 13117 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( -u ( |_ `  ( N  /  M
) )  e.  ZZ  /\  M  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  -u ( |_
`  ( N  /  M ) ) ) 
.x.  X )  =  ( -u ( |_
`  ( N  /  M ) )  .x.  ( M  .x.  X ) ) )
4722, 45, 25, 30, 46syl13anc 1251 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( M  x.  -u ( |_ `  ( N  /  M ) ) )  .x.  X )  =  ( -u ( |_ `  ( N  /  M ) )  .x.  ( M  .x.  X ) ) )
48 oveq2 5905 . . . . . . 7  |-  ( ( M  .x.  X )  =  .0.  ->  ( -u ( |_ `  ( N  /  M ) ) 
.x.  ( M  .x.  X ) )  =  ( -u ( |_
`  ( N  /  M ) )  .x.  .0.  ) )
4948adantl 277 . . . . . 6  |-  ( ( X  e.  B  /\  ( M  .x.  X )  =  .0.  )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  ( M  .x.  X ) )  =  ( -u ( |_ `  ( N  /  M ) )  .x.  .0.  ) )
50493ad2ant3 1022 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  ( M  .x.  X ) )  =  ( -u ( |_ `  ( N  /  M ) )  .x.  .0.  ) )
51 mulgmodid.o . . . . . . 7  |-  .0.  =  ( 0g `  G )
5231, 32, 51mulgz 13107 . . . . . 6  |-  ( ( G  e.  Grp  /\  -u ( |_ `  ( N  /  M ) )  e.  ZZ )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  .0.  )  =  .0.  )
5322, 45, 52syl2anc 411 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  .0.  )  =  .0.  )
5447, 50, 533eqtrd 2226 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( M  x.  -u ( |_ `  ( N  /  M ) ) )  .x.  X )  =  .0.  )
5542, 54eqtr3d 2224 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( -u ( M  x.  ( |_ `  ( N  /  M ) ) )  .x.  X )  =  .0.  )
5655oveq2d 5913 . 2  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  .x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M ) ) ) 
.x.  X ) )  =  ( ( N 
.x.  X ) ( +g  `  G )  .0.  ) )
57 id 19 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Grp )
5831, 32mulgcl 13096 . . . 4  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
5957, 23, 29, 58syl3an 1291 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  .x.  X
)  e.  B )
6031, 33, 51grprid 12991 . . 3  |-  ( ( G  e.  Grp  /\  ( N  .x.  X )  e.  B )  -> 
( ( N  .x.  X ) ( +g  `  G )  .0.  )  =  ( N  .x.  X ) )
6122, 59, 60syl2anc 411 . 2  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  .x.  X ) ( +g  `  G )  .0.  )  =  ( N  .x.  X ) )
6236, 56, 613eqtrd 2226 1  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   class class class wbr 4018   ` cfv 5235  (class class class)co 5897   CCcc 7840   0cc0 7842    + caddc 7845    x. cmul 7847    < clt 8023    - cmin 8159   -ucneg 8160    / cdiv 8660   NNcn 8950   ZZcz 9284   QQcq 9651   |_cfl 10301    mod cmo 10355   Basecbs 12515   +g cplusg 12592   0gc0g 12764   Grpcgrp 12960  .gcmg 13076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-mulg 13077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator