ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgmodid Unicode version

Theorem mulgmodid 13572
Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
mulgmodid.b  |-  B  =  ( Base `  G
)
mulgmodid.o  |-  .0.  =  ( 0g `  G )
mulgmodid.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgmodid  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )

Proof of Theorem mulgmodid
StepHypRef Expression
1 zq 9767 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  QQ )
21adantr 276 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  N  e.  QQ )
3 nnq 9774 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  QQ )
43adantl 277 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  M  e.  QQ )
5 nngt0 9081 . . . . . . 7  |-  ( M  e.  NN  ->  0  <  M )
65adantl 277 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  0  <  M )
7 modqval 10491 . . . . . 6  |-  ( ( N  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  ( N  mod  M )  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M
) ) ) ) )
82, 4, 6, 7syl3anc 1250 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  mod  M
)  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
983ad2ant2 1022 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  mod  M
)  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
109oveq1d 5972 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X
) )
11 zcn 9397 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
1211adantr 276 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  N  e.  CC )
13 nnz 9411 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  ZZ )
1413adantl 277 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  M  e.  ZZ )
15 znq 9765 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  /  M
)  e.  QQ )
1615flqcld 10442 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( |_ `  ( N  /  M ) )  e.  ZZ )
1714, 16zmulcld 9521 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ )
1817zcnd 9516 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  CC )
1912, 18negsubd 8409 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
20193ad2ant2 1022 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
2120oveq1d 5972 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X )  =  ( ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X
) )
22 simp1 1000 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  G  e.  Grp )
23 simpl 109 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  N  e.  ZZ )
24233ad2ant2 1022 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  N  e.  ZZ )
25143ad2ant2 1022 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  M  e.  ZZ )
26163ad2ant2 1022 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( |_ `  ( N  /  M ) )  e.  ZZ )
2725, 26zmulcld 9521 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ )
2827znegcld 9517 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  -u ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ )
29 simpl 109 . . . . 5  |-  ( ( X  e.  B  /\  ( M  .x.  X )  =  .0.  )  ->  X  e.  B )
30293ad2ant3 1023 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  X  e.  B )
31 mulgmodid.b . . . . 5  |-  B  =  ( Base `  G
)
32 mulgmodid.t . . . . 5  |-  .x.  =  (.g
`  G )
33 eqid 2206 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
3431, 32, 33mulgdir 13565 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  -u ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ  /\  X  e.  B ) )  -> 
( ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X )  =  ( ( N 
.x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) ) )
3522, 24, 28, 30, 34syl13anc 1252 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X )  =  ( ( N 
.x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) ) )
3610, 21, 353eqtr2d 2245 . 2  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( ( N 
.x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) ) )
37 nncn 9064 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  CC )
3837adantl 277 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  M  e.  CC )
3916zcnd 9516 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( |_ `  ( N  /  M ) )  e.  CC )
4038, 39mulneg2d 8504 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( M  x.  -u ( |_ `  ( N  /  M ) ) )  =  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )
41403ad2ant2 1022 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( M  x.  -u ( |_ `  ( N  /  M ) ) )  =  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )
4241oveq1d 5972 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( M  x.  -u ( |_ `  ( N  /  M ) ) )  .x.  X )  =  ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) )
43153ad2ant2 1022 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  /  M
)  e.  QQ )
4443flqcld 10442 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( |_ `  ( N  /  M ) )  e.  ZZ )
4544znegcld 9517 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  -u ( |_ `  ( N  /  M ) )  e.  ZZ )
4631, 32mulgassr 13571 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( -u ( |_ `  ( N  /  M
) )  e.  ZZ  /\  M  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  -u ( |_
`  ( N  /  M ) ) ) 
.x.  X )  =  ( -u ( |_
`  ( N  /  M ) )  .x.  ( M  .x.  X ) ) )
4722, 45, 25, 30, 46syl13anc 1252 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( M  x.  -u ( |_ `  ( N  /  M ) ) )  .x.  X )  =  ( -u ( |_ `  ( N  /  M ) )  .x.  ( M  .x.  X ) ) )
48 oveq2 5965 . . . . . . 7  |-  ( ( M  .x.  X )  =  .0.  ->  ( -u ( |_ `  ( N  /  M ) ) 
.x.  ( M  .x.  X ) )  =  ( -u ( |_
`  ( N  /  M ) )  .x.  .0.  ) )
4948adantl 277 . . . . . 6  |-  ( ( X  e.  B  /\  ( M  .x.  X )  =  .0.  )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  ( M  .x.  X ) )  =  ( -u ( |_ `  ( N  /  M ) )  .x.  .0.  ) )
50493ad2ant3 1023 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  ( M  .x.  X ) )  =  ( -u ( |_ `  ( N  /  M ) )  .x.  .0.  ) )
51 mulgmodid.o . . . . . . 7  |-  .0.  =  ( 0g `  G )
5231, 32, 51mulgz 13561 . . . . . 6  |-  ( ( G  e.  Grp  /\  -u ( |_ `  ( N  /  M ) )  e.  ZZ )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  .0.  )  =  .0.  )
5322, 45, 52syl2anc 411 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  .0.  )  =  .0.  )
5447, 50, 533eqtrd 2243 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( M  x.  -u ( |_ `  ( N  /  M ) ) )  .x.  X )  =  .0.  )
5542, 54eqtr3d 2241 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( -u ( M  x.  ( |_ `  ( N  /  M ) ) )  .x.  X )  =  .0.  )
5655oveq2d 5973 . 2  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  .x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M ) ) ) 
.x.  X ) )  =  ( ( N 
.x.  X ) ( +g  `  G )  .0.  ) )
57 id 19 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Grp )
5831, 32mulgcl 13550 . . . 4  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
5957, 23, 29, 58syl3an 1292 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  .x.  X
)  e.  B )
6031, 33, 51grprid 13439 . . 3  |-  ( ( G  e.  Grp  /\  ( N  .x.  X )  e.  B )  -> 
( ( N  .x.  X ) ( +g  `  G )  .0.  )  =  ( N  .x.  X ) )
6122, 59, 60syl2anc 411 . 2  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  .x.  X ) ( +g  `  G )  .0.  )  =  ( N  .x.  X ) )
6236, 56, 613eqtrd 2243 1  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   class class class wbr 4051   ` cfv 5280  (class class class)co 5957   CCcc 7943   0cc0 7945    + caddc 7948    x. cmul 7950    < clt 8127    - cmin 8263   -ucneg 8264    / cdiv 8765   NNcn 9056   ZZcz 9392   QQcq 9760   |_cfl 10433    mod cmo 10489   Basecbs 12907   +g cplusg 12984   0gc0g 13163   Grpcgrp 13407  .gcmg 13530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-mulg 13531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator