| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgmodid | Unicode version | ||
| Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
| Ref | Expression |
|---|---|
| mulgmodid.b |
|
| mulgmodid.o |
|
| mulgmodid.t |
|
| Ref | Expression |
|---|---|
| mulgmodid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zq 9767 |
. . . . . . 7
| |
| 2 | 1 | adantr 276 |
. . . . . 6
|
| 3 | nnq 9774 |
. . . . . . 7
| |
| 4 | 3 | adantl 277 |
. . . . . 6
|
| 5 | nngt0 9081 |
. . . . . . 7
| |
| 6 | 5 | adantl 277 |
. . . . . 6
|
| 7 | modqval 10491 |
. . . . . 6
| |
| 8 | 2, 4, 6, 7 | syl3anc 1250 |
. . . . 5
|
| 9 | 8 | 3ad2ant2 1022 |
. . . 4
|
| 10 | 9 | oveq1d 5972 |
. . 3
|
| 11 | zcn 9397 |
. . . . . . 7
| |
| 12 | 11 | adantr 276 |
. . . . . 6
|
| 13 | nnz 9411 |
. . . . . . . . 9
| |
| 14 | 13 | adantl 277 |
. . . . . . . 8
|
| 15 | znq 9765 |
. . . . . . . . 9
| |
| 16 | 15 | flqcld 10442 |
. . . . . . . 8
|
| 17 | 14, 16 | zmulcld 9521 |
. . . . . . 7
|
| 18 | 17 | zcnd 9516 |
. . . . . 6
|
| 19 | 12, 18 | negsubd 8409 |
. . . . 5
|
| 20 | 19 | 3ad2ant2 1022 |
. . . 4
|
| 21 | 20 | oveq1d 5972 |
. . 3
|
| 22 | simp1 1000 |
. . . 4
| |
| 23 | simpl 109 |
. . . . 5
| |
| 24 | 23 | 3ad2ant2 1022 |
. . . 4
|
| 25 | 14 | 3ad2ant2 1022 |
. . . . . 6
|
| 26 | 16 | 3ad2ant2 1022 |
. . . . . 6
|
| 27 | 25, 26 | zmulcld 9521 |
. . . . 5
|
| 28 | 27 | znegcld 9517 |
. . . 4
|
| 29 | simpl 109 |
. . . . 5
| |
| 30 | 29 | 3ad2ant3 1023 |
. . . 4
|
| 31 | mulgmodid.b |
. . . . 5
| |
| 32 | mulgmodid.t |
. . . . 5
| |
| 33 | eqid 2206 |
. . . . 5
| |
| 34 | 31, 32, 33 | mulgdir 13565 |
. . . 4
|
| 35 | 22, 24, 28, 30, 34 | syl13anc 1252 |
. . 3
|
| 36 | 10, 21, 35 | 3eqtr2d 2245 |
. 2
|
| 37 | nncn 9064 |
. . . . . . . 8
| |
| 38 | 37 | adantl 277 |
. . . . . . 7
|
| 39 | 16 | zcnd 9516 |
. . . . . . 7
|
| 40 | 38, 39 | mulneg2d 8504 |
. . . . . 6
|
| 41 | 40 | 3ad2ant2 1022 |
. . . . 5
|
| 42 | 41 | oveq1d 5972 |
. . . 4
|
| 43 | 15 | 3ad2ant2 1022 |
. . . . . . . 8
|
| 44 | 43 | flqcld 10442 |
. . . . . . 7
|
| 45 | 44 | znegcld 9517 |
. . . . . 6
|
| 46 | 31, 32 | mulgassr 13571 |
. . . . . 6
|
| 47 | 22, 45, 25, 30, 46 | syl13anc 1252 |
. . . . 5
|
| 48 | oveq2 5965 |
. . . . . . 7
| |
| 49 | 48 | adantl 277 |
. . . . . 6
|
| 50 | 49 | 3ad2ant3 1023 |
. . . . 5
|
| 51 | mulgmodid.o |
. . . . . . 7
| |
| 52 | 31, 32, 51 | mulgz 13561 |
. . . . . 6
|
| 53 | 22, 45, 52 | syl2anc 411 |
. . . . 5
|
| 54 | 47, 50, 53 | 3eqtrd 2243 |
. . . 4
|
| 55 | 42, 54 | eqtr3d 2241 |
. . 3
|
| 56 | 55 | oveq2d 5973 |
. 2
|
| 57 | id 19 |
. . . 4
| |
| 58 | 31, 32 | mulgcl 13550 |
. . . 4
|
| 59 | 57, 23, 29, 58 | syl3an 1292 |
. . 3
|
| 60 | 31, 33, 51 | grprid 13439 |
. . 3
|
| 61 | 22, 59, 60 | syl2anc 411 |
. 2
|
| 62 | 36, 56, 61 | 3eqtrd 2243 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-fzo 10285 df-fl 10435 df-mod 10490 df-seqfrec 10615 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-mulg 13531 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |