ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulgmodid Unicode version

Theorem mulgmodid 12872
Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
mulgmodid.b  |-  B  =  ( Base `  G
)
mulgmodid.o  |-  .0.  =  ( 0g `  G )
mulgmodid.t  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
mulgmodid  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )

Proof of Theorem mulgmodid
StepHypRef Expression
1 zq 9589 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  QQ )
21adantr 274 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  N  e.  QQ )
3 nnq 9596 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  QQ )
43adantl 275 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  M  e.  QQ )
5 nngt0 8907 . . . . . . 7  |-  ( M  e.  NN  ->  0  <  M )
65adantl 275 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  0  <  M )
7 modqval 10284 . . . . . 6  |-  ( ( N  e.  QQ  /\  M  e.  QQ  /\  0  <  M )  ->  ( N  mod  M )  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M
) ) ) ) )
82, 4, 6, 7syl3anc 1234 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  mod  M
)  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
983ad2ant2 1015 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  mod  M
)  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
109oveq1d 5872 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X
) )
11 zcn 9221 . . . . . . 7  |-  ( N  e.  ZZ  ->  N  e.  CC )
1211adantr 274 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  N  e.  CC )
13 nnz 9235 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  ZZ )
1413adantl 275 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  M  e.  ZZ )
15 znq 9587 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  /  M
)  e.  QQ )
1615flqcld 10237 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( |_ `  ( N  /  M ) )  e.  ZZ )
1714, 16zmulcld 9344 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ )
1817zcnd 9339 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  CC )
1912, 18negsubd 8240 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
20193ad2ant2 1015 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  =  ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) ) )
2120oveq1d 5872 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X )  =  ( ( N  -  ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X
) )
22 simp1 993 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  G  e.  Grp )
23 simpl 108 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  N  e.  ZZ )
24233ad2ant2 1015 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  N  e.  ZZ )
25143ad2ant2 1015 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  M  e.  ZZ )
26163ad2ant2 1015 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( |_ `  ( N  /  M ) )  e.  ZZ )
2725, 26zmulcld 9344 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ )
2827znegcld 9340 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  -u ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ )
29 simpl 108 . . . . 5  |-  ( ( X  e.  B  /\  ( M  .x.  X )  =  .0.  )  ->  X  e.  B )
30293ad2ant3 1016 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  X  e.  B )
31 mulgmodid.b . . . . 5  |-  B  =  ( Base `  G
)
32 mulgmodid.t . . . . 5  |-  .x.  =  (.g
`  G )
33 eqid 2171 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
3431, 32, 33mulgdir 12865 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  -u ( M  x.  ( |_ `  ( N  /  M ) ) )  e.  ZZ  /\  X  e.  B ) )  -> 
( ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X )  =  ( ( N 
.x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) ) )
3522, 24, 28, 30, 34syl13anc 1236 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  +  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )  .x.  X )  =  ( ( N 
.x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) ) )
3610, 21, 353eqtr2d 2210 . 2  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( ( N 
.x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) ) )
37 nncn 8890 . . . . . . . 8  |-  ( M  e.  NN  ->  M  e.  CC )
3837adantl 275 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  M  e.  CC )
3916zcnd 9339 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( |_ `  ( N  /  M ) )  e.  CC )
4038, 39mulneg2d 8335 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  NN )  ->  ( M  x.  -u ( |_ `  ( N  /  M ) ) )  =  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )
41403ad2ant2 1015 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( M  x.  -u ( |_ `  ( N  /  M ) ) )  =  -u ( M  x.  ( |_ `  ( N  /  M ) ) ) )
4241oveq1d 5872 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( M  x.  -u ( |_ `  ( N  /  M ) ) )  .x.  X )  =  ( -u ( M  x.  ( |_ `  ( N  /  M
) ) )  .x.  X ) )
43153ad2ant2 1015 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  /  M
)  e.  QQ )
4443flqcld 10237 . . . . . . 7  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( |_ `  ( N  /  M ) )  e.  ZZ )
4544znegcld 9340 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  ->  -u ( |_ `  ( N  /  M ) )  e.  ZZ )
4631, 32mulgassr 12871 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( -u ( |_ `  ( N  /  M
) )  e.  ZZ  /\  M  e.  ZZ  /\  X  e.  B )
)  ->  ( ( M  x.  -u ( |_
`  ( N  /  M ) ) ) 
.x.  X )  =  ( -u ( |_
`  ( N  /  M ) )  .x.  ( M  .x.  X ) ) )
4722, 45, 25, 30, 46syl13anc 1236 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( M  x.  -u ( |_ `  ( N  /  M ) ) )  .x.  X )  =  ( -u ( |_ `  ( N  /  M ) )  .x.  ( M  .x.  X ) ) )
48 oveq2 5865 . . . . . . 7  |-  ( ( M  .x.  X )  =  .0.  ->  ( -u ( |_ `  ( N  /  M ) ) 
.x.  ( M  .x.  X ) )  =  ( -u ( |_
`  ( N  /  M ) )  .x.  .0.  ) )
4948adantl 275 . . . . . 6  |-  ( ( X  e.  B  /\  ( M  .x.  X )  =  .0.  )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  ( M  .x.  X ) )  =  ( -u ( |_ `  ( N  /  M ) )  .x.  .0.  ) )
50493ad2ant3 1016 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  ( M  .x.  X ) )  =  ( -u ( |_ `  ( N  /  M ) )  .x.  .0.  ) )
51 mulgmodid.o . . . . . . 7  |-  .0.  =  ( 0g `  G )
5231, 32, 51mulgz 12861 . . . . . 6  |-  ( ( G  e.  Grp  /\  -u ( |_ `  ( N  /  M ) )  e.  ZZ )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  .0.  )  =  .0.  )
5322, 45, 52syl2anc 409 . . . . 5  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( -u ( |_ `  ( N  /  M
) )  .x.  .0.  )  =  .0.  )
5447, 50, 533eqtrd 2208 . . . 4  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( M  x.  -u ( |_ `  ( N  /  M ) ) )  .x.  X )  =  .0.  )
5542, 54eqtr3d 2206 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( -u ( M  x.  ( |_ `  ( N  /  M ) ) )  .x.  X )  =  .0.  )
5655oveq2d 5873 . 2  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  .x.  X ) ( +g  `  G ) ( -u ( M  x.  ( |_ `  ( N  /  M ) ) ) 
.x.  X ) )  =  ( ( N 
.x.  X ) ( +g  `  G )  .0.  ) )
57 id 19 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Grp )
5831, 32mulgcl 12851 . . . 4  |-  ( ( G  e.  Grp  /\  N  e.  ZZ  /\  X  e.  B )  ->  ( N  .x.  X )  e.  B )
5957, 23, 29, 58syl3an 1276 . . 3  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( N  .x.  X
)  e.  B )
6031, 33, 51grprid 12759 . . 3  |-  ( ( G  e.  Grp  /\  ( N  .x.  X )  e.  B )  -> 
( ( N  .x.  X ) ( +g  `  G )  .0.  )  =  ( N  .x.  X ) )
6122, 59, 60syl2anc 409 . 2  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  .x.  X ) ( +g  `  G )  .0.  )  =  ( N  .x.  X ) )
6236, 56, 613eqtrd 2208 1  |-  ( ( G  e.  Grp  /\  ( N  e.  ZZ  /\  M  e.  NN )  /\  ( X  e.  B  /\  ( M 
.x.  X )  =  .0.  ) )  -> 
( ( N  mod  M )  .x.  X )  =  ( N  .x.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 974    = wceq 1349    e. wcel 2142   class class class wbr 3990   ` cfv 5200  (class class class)co 5857   CCcc 7776   0cc0 7778    + caddc 7781    x. cmul 7783    < clt 7958    - cmin 8094   -ucneg 8095    / cdiv 8593   NNcn 8882   ZZcz 9216   QQcq 9582   |_cfl 10228    mod cmo 10282   Basecbs 12420   +g cplusg 12484   0gc0g 12618   Grpcgrp 12730  .gcmg 12834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 610  ax-in2 611  ax-io 705  ax-5 1441  ax-7 1442  ax-gen 1443  ax-ie1 1487  ax-ie2 1488  ax-8 1498  ax-10 1499  ax-11 1500  ax-i12 1501  ax-bndl 1503  ax-4 1504  ax-17 1520  ax-i9 1524  ax-ial 1528  ax-i5r 1529  ax-13 2144  ax-14 2145  ax-ext 2153  ax-coll 4105  ax-sep 4108  ax-nul 4116  ax-pow 4161  ax-pr 4195  ax-un 4419  ax-setind 4522  ax-iinf 4573  ax-cnex 7869  ax-resscn 7870  ax-1cn 7871  ax-1re 7872  ax-icn 7873  ax-addcl 7874  ax-addrcl 7875  ax-mulcl 7876  ax-mulrcl 7877  ax-addcom 7878  ax-mulcom 7879  ax-addass 7880  ax-mulass 7881  ax-distr 7882  ax-i2m1 7883  ax-0lt1 7884  ax-1rid 7885  ax-0id 7886  ax-rnegex 7887  ax-precex 7888  ax-cnre 7889  ax-pre-ltirr 7890  ax-pre-ltwlin 7891  ax-pre-lttrn 7892  ax-pre-apti 7893  ax-pre-ltadd 7894  ax-pre-mulgt0 7895  ax-pre-mulext 7896  ax-arch 7897
This theorem depends on definitions:  df-bi 116  df-dc 831  df-3or 975  df-3an 976  df-tru 1352  df-fal 1355  df-nf 1455  df-sb 1757  df-eu 2023  df-mo 2024  df-clab 2158  df-cleq 2164  df-clel 2167  df-nfc 2302  df-ne 2342  df-nel 2437  df-ral 2454  df-rex 2455  df-reu 2456  df-rmo 2457  df-rab 2458  df-v 2733  df-sbc 2957  df-csb 3051  df-dif 3124  df-un 3126  df-in 3128  df-ss 3135  df-nul 3416  df-if 3528  df-pw 3569  df-sn 3590  df-pr 3591  df-op 3593  df-uni 3798  df-int 3833  df-iun 3876  df-br 3991  df-opab 4052  df-mpt 4053  df-tr 4089  df-id 4279  df-po 4282  df-iso 4283  df-iord 4352  df-on 4354  df-ilim 4355  df-suc 4357  df-iom 4576  df-xp 4618  df-rel 4619  df-cnv 4620  df-co 4621  df-dm 4622  df-rn 4623  df-res 4624  df-ima 4625  df-iota 5162  df-fun 5202  df-fn 5203  df-f 5204  df-f1 5205  df-fo 5206  df-f1o 5207  df-fv 5208  df-riota 5813  df-ov 5860  df-oprab 5861  df-mpo 5862  df-1st 6123  df-2nd 6124  df-recs 6288  df-frec 6374  df-pnf 7960  df-mnf 7961  df-xr 7962  df-ltxr 7963  df-le 7964  df-sub 8096  df-neg 8097  df-reap 8498  df-ap 8505  df-div 8594  df-inn 8883  df-2 8941  df-n0 9140  df-z 9217  df-uz 9492  df-q 9583  df-rp 9615  df-fz 9970  df-fzo 10103  df-fl 10230  df-mod 10283  df-seqfrec 10406  df-ndx 12423  df-slot 12424  df-base 12426  df-plusg 12497  df-0g 12620  df-mgm 12632  df-sgrp 12665  df-mnd 12675  df-grp 12733  df-minusg 12734  df-mulg 12835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator