ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprod Unicode version

Theorem pcprod 12869
Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypothesis
Ref Expression
pcprod.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  N )
) ,  1 ) )
Assertion
Ref Expression
pcprod  |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  N
)  =  N )
Distinct variable group:    n, N
Allowed substitution hint:    F( n)

Proof of Theorem pcprod
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 pcprod.1 . . . . . 6  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  N )
) ,  1 ) )
2 pccl 12822 . . . . . . . . 9  |-  ( ( n  e.  Prime  /\  N  e.  NN )  ->  (
n  pCnt  N )  e.  NN0 )
32ancoms 268 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  Prime )  -> 
( n  pCnt  N
)  e.  NN0 )
43ralrimiva 2603 . . . . . . 7  |-  ( N  e.  NN  ->  A. n  e.  Prime  ( n  pCnt  N )  e.  NN0 )
54adantl 277 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  A. n  e.  Prime  ( n  pCnt  N )  e.  NN0 )
6 simpr 110 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  N  e.  NN )
7 simpl 109 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  p  e.  Prime )
8 oveq1 6008 . . . . . 6  |-  ( n  =  p  ->  (
n  pCnt  N )  =  ( p  pCnt  N ) )
91, 5, 6, 7, 8pcmpt 12866 . . . . 5  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  (
p  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( p  <_  N ,  ( p  pCnt  N ) ,  0 ) )
10 iftrue 3607 . . . . . . 7  |-  ( p  <_  N  ->  if ( p  <_  N , 
( p  pCnt  N
) ,  0 )  =  ( p  pCnt  N ) )
1110adantl 277 . . . . . 6  |-  ( ( ( p  e.  Prime  /\  N  e.  NN )  /\  p  <_  N
)  ->  if (
p  <_  N , 
( p  pCnt  N
) ,  0 )  =  ( p  pCnt  N ) )
12 iffalse 3610 . . . . . . . 8  |-  ( -.  p  <_  N  ->  if ( p  <_  N ,  ( p  pCnt  N ) ,  0 )  =  0 )
1312adantl 277 . . . . . . 7  |-  ( ( ( p  e.  Prime  /\  N  e.  NN )  /\  -.  p  <_  N )  ->  if ( p  <_  N , 
( p  pCnt  N
) ,  0 )  =  0 )
14 prmz 12633 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  ZZ )
15 dvdsle 12355 . . . . . . . . . 10  |-  ( ( p  e.  ZZ  /\  N  e.  NN )  ->  ( p  ||  N  ->  p  <_  N )
)
1614, 15sylan 283 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  (
p  ||  N  ->  p  <_  N ) )
1716con3dimp 638 . . . . . . . 8  |-  ( ( ( p  e.  Prime  /\  N  e.  NN )  /\  -.  p  <_  N )  ->  -.  p  ||  N )
18 pceq0 12845 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  (
( p  pCnt  N
)  =  0  <->  -.  p  ||  N ) )
1918adantr 276 . . . . . . . 8  |-  ( ( ( p  e.  Prime  /\  N  e.  NN )  /\  -.  p  <_  N )  ->  (
( p  pCnt  N
)  =  0  <->  -.  p  ||  N ) )
2017, 19mpbird 167 . . . . . . 7  |-  ( ( ( p  e.  Prime  /\  N  e.  NN )  /\  -.  p  <_  N )  ->  (
p  pCnt  N )  =  0 )
2113, 20eqtr4d 2265 . . . . . 6  |-  ( ( ( p  e.  Prime  /\  N  e.  NN )  /\  -.  p  <_  N )  ->  if ( p  <_  N , 
( p  pCnt  N
) ,  0 )  =  ( p  pCnt  N ) )
2214adantr 276 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  p  e.  ZZ )
236nnzd 9568 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  N  e.  ZZ )
24 zdcle 9523 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  -> DECID  p  <_  N )
2522, 23, 24syl2anc 411 . . . . . . 7  |-  ( ( p  e.  Prime  /\  N  e.  NN )  -> DECID  p  <_  N )
26 exmiddc 841 . . . . . . 7  |-  (DECID  p  <_  N  ->  ( p  <_  N  \/  -.  p  <_  N ) )
2725, 26syl 14 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  (
p  <_  N  \/  -.  p  <_  N ) )
2811, 21, 27mpjaodan 803 . . . . 5  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  if ( p  <_  N , 
( p  pCnt  N
) ,  0 )  =  ( p  pCnt  N ) )
299, 28eqtrd 2262 . . . 4  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  (
p  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  ( p  pCnt  N )
)
3029ancoms 268 . . 3  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  ( p  pCnt  N )
)
3130ralrimiva 2603 . 2  |-  ( N  e.  NN  ->  A. p  e.  Prime  ( p  pCnt  (  seq 1 (  x.  ,  F ) `  N ) )  =  ( p  pCnt  N
) )
321, 4pcmptcl 12865 . . . . . 6  |-  ( N  e.  NN  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
3332simprd 114 . . . . 5  |-  ( N  e.  NN  ->  seq 1 (  x.  ,  F ) : NN --> NN )
34 ffvelcdm 5768 . . . . 5  |-  ( (  seq 1 (  x.  ,  F ) : NN --> NN  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )
3533, 34mpancom 422 . . . 4  |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )
3635nnnn0d 9422 . . 3  |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN0 )
37 nnnn0 9376 . . 3  |-  ( N  e.  NN  ->  N  e.  NN0 )
38 pc11 12854 . . 3  |-  ( ( (  seq 1 (  x.  ,  F ) `
 N )  e. 
NN0  /\  N  e.  NN0 )  ->  ( (  seq 1 (  x.  ,  F ) `  N
)  =  N  <->  A. p  e.  Prime  ( p  pCnt  (  seq 1 (  x.  ,  F ) `  N ) )  =  ( p  pCnt  N
) ) )
3936, 37, 38syl2anc 411 . 2  |-  ( N  e.  NN  ->  (
(  seq 1 (  x.  ,  F ) `  N )  =  N  <->  A. p  e.  Prime  ( p  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  ( p  pCnt  N )
) )
4031, 39mpbird 167 1  |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  N
)  =  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   ifcif 3602   class class class wbr 4083    |-> cmpt 4145   -->wf 5314   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    x. cmul 8004    <_ cle 8182   NNcn 9110   NN0cn0 9369   ZZcz 9446    seqcseq 10669   ^cexp 10760    || cdvds 12298   Primecprime 12629    pCnt cpc 12807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-xnn0 9433  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-prm 12630  df-pc 12808
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator