ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcprod Unicode version

Theorem pcprod 12542
Description: The product of the primes taken to their respective powers reconstructs the original number. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypothesis
Ref Expression
pcprod.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  N )
) ,  1 ) )
Assertion
Ref Expression
pcprod  |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  N
)  =  N )
Distinct variable group:    n, N
Allowed substitution hint:    F( n)

Proof of Theorem pcprod
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 pcprod.1 . . . . . 6  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ (
n  pCnt  N )
) ,  1 ) )
2 pccl 12495 . . . . . . . . 9  |-  ( ( n  e.  Prime  /\  N  e.  NN )  ->  (
n  pCnt  N )  e.  NN0 )
32ancoms 268 . . . . . . . 8  |-  ( ( N  e.  NN  /\  n  e.  Prime )  -> 
( n  pCnt  N
)  e.  NN0 )
43ralrimiva 2570 . . . . . . 7  |-  ( N  e.  NN  ->  A. n  e.  Prime  ( n  pCnt  N )  e.  NN0 )
54adantl 277 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  A. n  e.  Prime  ( n  pCnt  N )  e.  NN0 )
6 simpr 110 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  N  e.  NN )
7 simpl 109 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  p  e.  Prime )
8 oveq1 5932 . . . . . 6  |-  ( n  =  p  ->  (
n  pCnt  N )  =  ( p  pCnt  N ) )
91, 5, 6, 7, 8pcmpt 12539 . . . . 5  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  (
p  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  if ( p  <_  N ,  ( p  pCnt  N ) ,  0 ) )
10 iftrue 3567 . . . . . . 7  |-  ( p  <_  N  ->  if ( p  <_  N , 
( p  pCnt  N
) ,  0 )  =  ( p  pCnt  N ) )
1110adantl 277 . . . . . 6  |-  ( ( ( p  e.  Prime  /\  N  e.  NN )  /\  p  <_  N
)  ->  if (
p  <_  N , 
( p  pCnt  N
) ,  0 )  =  ( p  pCnt  N ) )
12 iffalse 3570 . . . . . . . 8  |-  ( -.  p  <_  N  ->  if ( p  <_  N ,  ( p  pCnt  N ) ,  0 )  =  0 )
1312adantl 277 . . . . . . 7  |-  ( ( ( p  e.  Prime  /\  N  e.  NN )  /\  -.  p  <_  N )  ->  if ( p  <_  N , 
( p  pCnt  N
) ,  0 )  =  0 )
14 prmz 12306 . . . . . . . . . 10  |-  ( p  e.  Prime  ->  p  e.  ZZ )
15 dvdsle 12028 . . . . . . . . . 10  |-  ( ( p  e.  ZZ  /\  N  e.  NN )  ->  ( p  ||  N  ->  p  <_  N )
)
1614, 15sylan 283 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  (
p  ||  N  ->  p  <_  N ) )
1716con3dimp 636 . . . . . . . 8  |-  ( ( ( p  e.  Prime  /\  N  e.  NN )  /\  -.  p  <_  N )  ->  -.  p  ||  N )
18 pceq0 12518 . . . . . . . . 9  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  (
( p  pCnt  N
)  =  0  <->  -.  p  ||  N ) )
1918adantr 276 . . . . . . . 8  |-  ( ( ( p  e.  Prime  /\  N  e.  NN )  /\  -.  p  <_  N )  ->  (
( p  pCnt  N
)  =  0  <->  -.  p  ||  N ) )
2017, 19mpbird 167 . . . . . . 7  |-  ( ( ( p  e.  Prime  /\  N  e.  NN )  /\  -.  p  <_  N )  ->  (
p  pCnt  N )  =  0 )
2113, 20eqtr4d 2232 . . . . . 6  |-  ( ( ( p  e.  Prime  /\  N  e.  NN )  /\  -.  p  <_  N )  ->  if ( p  <_  N , 
( p  pCnt  N
) ,  0 )  =  ( p  pCnt  N ) )
2214adantr 276 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  p  e.  ZZ )
236nnzd 9466 . . . . . . . 8  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  N  e.  ZZ )
24 zdcle 9421 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  -> DECID  p  <_  N )
2522, 23, 24syl2anc 411 . . . . . . 7  |-  ( ( p  e.  Prime  /\  N  e.  NN )  -> DECID  p  <_  N )
26 exmiddc 837 . . . . . . 7  |-  (DECID  p  <_  N  ->  ( p  <_  N  \/  -.  p  <_  N ) )
2725, 26syl 14 . . . . . 6  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  (
p  <_  N  \/  -.  p  <_  N ) )
2811, 21, 27mpjaodan 799 . . . . 5  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  if ( p  <_  N , 
( p  pCnt  N
) ,  0 )  =  ( p  pCnt  N ) )
299, 28eqtrd 2229 . . . 4  |-  ( ( p  e.  Prime  /\  N  e.  NN )  ->  (
p  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  ( p  pCnt  N )
)
3029ancoms 268 . . 3  |-  ( ( N  e.  NN  /\  p  e.  Prime )  -> 
( p  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  ( p  pCnt  N )
)
3130ralrimiva 2570 . 2  |-  ( N  e.  NN  ->  A. p  e.  Prime  ( p  pCnt  (  seq 1 (  x.  ,  F ) `  N ) )  =  ( p  pCnt  N
) )
321, 4pcmptcl 12538 . . . . . 6  |-  ( N  e.  NN  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
3332simprd 114 . . . . 5  |-  ( N  e.  NN  ->  seq 1 (  x.  ,  F ) : NN --> NN )
34 ffvelcdm 5698 . . . . 5  |-  ( (  seq 1 (  x.  ,  F ) : NN --> NN  /\  N  e.  NN )  ->  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )
3533, 34mpancom 422 . . . 4  |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )
3635nnnn0d 9321 . . 3  |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN0 )
37 nnnn0 9275 . . 3  |-  ( N  e.  NN  ->  N  e.  NN0 )
38 pc11 12527 . . 3  |-  ( ( (  seq 1 (  x.  ,  F ) `
 N )  e. 
NN0  /\  N  e.  NN0 )  ->  ( (  seq 1 (  x.  ,  F ) `  N
)  =  N  <->  A. p  e.  Prime  ( p  pCnt  (  seq 1 (  x.  ,  F ) `  N ) )  =  ( p  pCnt  N
) ) )
3936, 37, 38syl2anc 411 . 2  |-  ( N  e.  NN  ->  (
(  seq 1 (  x.  ,  F ) `  N )  =  N  <->  A. p  e.  Prime  ( p  pCnt  (  seq 1 (  x.  ,  F ) `  N
) )  =  ( p  pCnt  N )
) )
4031, 39mpbird 167 1  |-  ( N  e.  NN  ->  (  seq 1 (  x.  ,  F ) `  N
)  =  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   ifcif 3562   class class class wbr 4034    |-> cmpt 4095   -->wf 5255   ` cfv 5259  (class class class)co 5925   0cc0 7898   1c1 7899    x. cmul 7903    <_ cle 8081   NNcn 9009   NN0cn0 9268   ZZcz 9345    seqcseq 10558   ^cexp 10649    || cdvds 11971   Primecprime 12302    pCnt cpc 12480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-xnn0 9332  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148  df-prm 12303  df-pc 12481
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator