ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpbasg Unicode version

Theorem mgpbasg 13773
Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
mgpbas.1  |-  M  =  (mulGrp `  R )
mgpbas.2  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
mgpbasg  |-  ( R  e.  V  ->  B  =  ( Base `  M
) )

Proof of Theorem mgpbasg
StepHypRef Expression
1 mgpbas.2 . 2  |-  B  =  ( Base `  R
)
2 mulrslid 13049 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
32slotex 12944 . . . 4  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
4 baseslid 12974 . . . . 5  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
5 basendxnplusgndx 13042 . . . . 5  |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
6 plusgslid 13029 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
76simpri 113 . . . . 5  |-  ( +g  ` 
ndx )  e.  NN
84, 5, 7setsslnid 12969 . . . 4  |-  ( ( R  e.  V  /\  ( .r `  R )  e.  _V )  -> 
( Base `  R )  =  ( Base `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
93, 8mpdan 421 . . 3  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
10 mgpbas.1 . . . . 5  |-  M  =  (mulGrp `  R )
11 eqid 2206 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
1210, 11mgpvalg 13770 . . . 4  |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
1312fveq2d 5598 . . 3  |-  ( R  e.  V  ->  ( Base `  M )  =  ( Base `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
149, 13eqtr4d 2242 . 2  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  M
) )
151, 14eqtrid 2251 1  |-  ( R  e.  V  ->  B  =  ( Base `  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773   <.cop 3641   ` cfv 5285  (class class class)co 5962   NNcn 9066   ndxcnx 12914   sSet csts 12915  Slot cslot 12916   Basecbs 12917   +g cplusg 12994   .rcmulr 12995  mulGrpcmgp 13767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-iota 5246  df-fun 5287  df-fn 5288  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-plusg 13007  df-mulr 13008  df-mgp 13768
This theorem is referenced by:  mgptopng  13776  mgpress  13778  rngass  13786  rngcl  13791  isrngd  13800  rngpropd  13802  dfur2g  13809  srgcl  13817  srgass  13818  srgideu  13819  srgidcl  13823  srgidmlem  13825  issrgid  13828  srg1zr  13834  srgpcomp  13837  srgpcompp  13838  srgpcomppsc  13839  ringcl  13860  crngcom  13861  iscrng2  13862  ringass  13863  ringideu  13864  ringidcl  13867  ringidmlem  13869  isringid  13872  ringidss  13876  ringpropd  13885  crngpropd  13886  isringd  13888  iscrngd  13889  ring1  13906  oppr1g  13929  unitgrpbasd  13962  unitsubm  13966  rngidpropdg  13993  dfrhm2  14001  rhmmul  14011  isrhm2d  14012  rhmf1o  14015  subrgsubm  14081  issubrg3  14094  rhmpropd  14101  rnglidlmmgm  14343  rnglidlmsgrp  14344  cnfldexp  14424  expghmap  14454  lgseisenlem3  15634  lgseisenlem4  15635
  Copyright terms: Public domain W3C validator