| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpbasg | Unicode version | ||
| Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mgpbas.1 |
|
| mgpbas.2 |
|
| Ref | Expression |
|---|---|
| mgpbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpbas.2 |
. 2
| |
| 2 | mulrslid 13049 |
. . . . 5
| |
| 3 | 2 | slotex 12944 |
. . . 4
|
| 4 | baseslid 12974 |
. . . . 5
| |
| 5 | basendxnplusgndx 13042 |
. . . . 5
| |
| 6 | plusgslid 13029 |
. . . . . 6
| |
| 7 | 6 | simpri 113 |
. . . . 5
|
| 8 | 4, 5, 7 | setsslnid 12969 |
. . . 4
|
| 9 | 3, 8 | mpdan 421 |
. . 3
|
| 10 | mgpbas.1 |
. . . . 5
| |
| 11 | eqid 2206 |
. . . . 5
| |
| 12 | 10, 11 | mgpvalg 13770 |
. . . 4
|
| 13 | 12 | fveq2d 5598 |
. . 3
|
| 14 | 9, 13 | eqtr4d 2242 |
. 2
|
| 15 | 1, 14 | eqtrid 2251 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fn 5288 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 df-2 9125 df-3 9126 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-plusg 13007 df-mulr 13008 df-mgp 13768 |
| This theorem is referenced by: mgptopng 13776 mgpress 13778 rngass 13786 rngcl 13791 isrngd 13800 rngpropd 13802 dfur2g 13809 srgcl 13817 srgass 13818 srgideu 13819 srgidcl 13823 srgidmlem 13825 issrgid 13828 srg1zr 13834 srgpcomp 13837 srgpcompp 13838 srgpcomppsc 13839 ringcl 13860 crngcom 13861 iscrng2 13862 ringass 13863 ringideu 13864 ringidcl 13867 ringidmlem 13869 isringid 13872 ringidss 13876 ringpropd 13885 crngpropd 13886 isringd 13888 iscrngd 13889 ring1 13906 oppr1g 13929 unitgrpbasd 13962 unitsubm 13966 rngidpropdg 13993 dfrhm2 14001 rhmmul 14011 isrhm2d 14012 rhmf1o 14015 subrgsubm 14081 issubrg3 14094 rhmpropd 14101 rnglidlmmgm 14343 rnglidlmsgrp 14344 cnfldexp 14424 expghmap 14454 lgseisenlem3 15634 lgseisenlem4 15635 |
| Copyright terms: Public domain | W3C validator |