ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpbasg Unicode version

Theorem mgpbasg 13152
Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
mgpbas.1  |-  M  =  (mulGrp `  R )
mgpbas.2  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
mgpbasg  |-  ( R  e.  V  ->  B  =  ( Base `  M
) )

Proof of Theorem mgpbasg
StepHypRef Expression
1 mgpbas.2 . 2  |-  B  =  ( Base `  R
)
2 mulrslid 12593 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
32slotex 12492 . . . 4  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
4 baseslid 12522 . . . . 5  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
5 basendxnplusgndx 12586 . . . . 5  |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
6 plusgslid 12574 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
76simpri 113 . . . . 5  |-  ( +g  ` 
ndx )  e.  NN
84, 5, 7setsslnid 12517 . . . 4  |-  ( ( R  e.  V  /\  ( .r `  R )  e.  _V )  -> 
( Base `  R )  =  ( Base `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
93, 8mpdan 421 . . 3  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
10 mgpbas.1 . . . . 5  |-  M  =  (mulGrp `  R )
11 eqid 2177 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
1210, 11mgpvalg 13149 . . . 4  |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
1312fveq2d 5521 . . 3  |-  ( R  e.  V  ->  ( Base `  M )  =  ( Base `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
149, 13eqtr4d 2213 . 2  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  M
) )
151, 14eqtrid 2222 1  |-  ( R  e.  V  ->  B  =  ( Base `  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2739   <.cop 3597   ` cfv 5218  (class class class)co 5878   NNcn 8922   ndxcnx 12462   sSet csts 12463  Slot cslot 12464   Basecbs 12465   +g cplusg 12539   .rcmulr 12540  mulGrpcmgp 13146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-pre-ltirr 7926  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-inn 8923  df-2 8981  df-3 8982  df-ndx 12468  df-slot 12469  df-base 12471  df-sets 12472  df-plusg 12552  df-mulr 12553  df-mgp 13147
This theorem is referenced by:  mgptopng  13155  mgpress  13157  rngass  13165  rngcl  13170  isrngd  13179  dfur2g  13183  srgcl  13191  srgass  13192  srgideu  13193  srgidcl  13197  srgidmlem  13199  issrgid  13202  srg1zr  13208  srgpcomp  13211  srgpcompp  13212  srgpcomppsc  13213  ringcl  13234  crngcom  13235  iscrng2  13236  ringass  13237  ringideu  13238  ringidcl  13241  ringidmlem  13243  isringid  13246  ringidss  13250  ringpropd  13255  crngpropd  13256  isringd  13258  iscrngd  13259  ring1  13274  oppr1g  13290  unitgrpbasd  13322  unitsubm  13326  rngidpropdg  13353  subrgsubm  13393  issubrg3  13406  cnfldexp  13645
  Copyright terms: Public domain W3C validator