ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpbasg Unicode version

Theorem mgpbasg 13560
Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
mgpbas.1  |-  M  =  (mulGrp `  R )
mgpbas.2  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
mgpbasg  |-  ( R  e.  V  ->  B  =  ( Base `  M
) )

Proof of Theorem mgpbasg
StepHypRef Expression
1 mgpbas.2 . 2  |-  B  =  ( Base `  R
)
2 mulrslid 12836 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
32slotex 12732 . . . 4  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
4 baseslid 12762 . . . . 5  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
5 basendxnplusgndx 12829 . . . . 5  |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
6 plusgslid 12817 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
76simpri 113 . . . . 5  |-  ( +g  ` 
ndx )  e.  NN
84, 5, 7setsslnid 12757 . . . 4  |-  ( ( R  e.  V  /\  ( .r `  R )  e.  _V )  -> 
( Base `  R )  =  ( Base `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
93, 8mpdan 421 . . 3  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
10 mgpbas.1 . . . . 5  |-  M  =  (mulGrp `  R )
11 eqid 2196 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
1210, 11mgpvalg 13557 . . . 4  |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
1312fveq2d 5565 . . 3  |-  ( R  e.  V  ->  ( Base `  M )  =  ( Base `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
149, 13eqtr4d 2232 . 2  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  M
) )
151, 14eqtrid 2241 1  |-  ( R  e.  V  ->  B  =  ( Base `  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   <.cop 3626   ` cfv 5259  (class class class)co 5925   NNcn 9009   ndxcnx 12702   sSet csts 12703  Slot cslot 12704   Basecbs 12705   +g cplusg 12782   .rcmulr 12783  mulGrpcmgp 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-plusg 12795  df-mulr 12796  df-mgp 13555
This theorem is referenced by:  mgptopng  13563  mgpress  13565  rngass  13573  rngcl  13578  isrngd  13587  rngpropd  13589  dfur2g  13596  srgcl  13604  srgass  13605  srgideu  13606  srgidcl  13610  srgidmlem  13612  issrgid  13615  srg1zr  13621  srgpcomp  13624  srgpcompp  13625  srgpcomppsc  13626  ringcl  13647  crngcom  13648  iscrng2  13649  ringass  13650  ringideu  13651  ringidcl  13654  ringidmlem  13656  isringid  13659  ringidss  13663  ringpropd  13672  crngpropd  13673  isringd  13675  iscrngd  13676  ring1  13693  oppr1g  13716  unitgrpbasd  13749  unitsubm  13753  rngidpropdg  13780  dfrhm2  13788  rhmmul  13798  isrhm2d  13799  rhmf1o  13802  subrgsubm  13868  issubrg3  13881  rhmpropd  13888  rnglidlmmgm  14130  rnglidlmsgrp  14131  cnfldexp  14211  expghmap  14241  lgseisenlem3  15421  lgseisenlem4  15422
  Copyright terms: Public domain W3C validator