ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpbasg Unicode version

Theorem mgpbasg 13178
Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
mgpbas.1  |-  M  =  (mulGrp `  R )
mgpbas.2  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
mgpbasg  |-  ( R  e.  V  ->  B  =  ( Base `  M
) )

Proof of Theorem mgpbasg
StepHypRef Expression
1 mgpbas.2 . 2  |-  B  =  ( Base `  R
)
2 mulrslid 12605 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
32slotex 12503 . . . 4  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
4 baseslid 12533 . . . . 5  |-  ( Base 
= Slot  ( Base `  ndx )  /\  ( Base `  ndx )  e.  NN )
5 basendxnplusgndx 12598 . . . . 5  |-  ( Base `  ndx )  =/=  ( +g  `  ndx )
6 plusgslid 12586 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
76simpri 113 . . . . 5  |-  ( +g  ` 
ndx )  e.  NN
84, 5, 7setsslnid 12528 . . . 4  |-  ( ( R  e.  V  /\  ( .r `  R )  e.  _V )  -> 
( Base `  R )  =  ( Base `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
93, 8mpdan 421 . . 3  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
10 mgpbas.1 . . . . 5  |-  M  =  (mulGrp `  R )
11 eqid 2187 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
1210, 11mgpvalg 13175 . . . 4  |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
)
1312fveq2d 5531 . . 3  |-  ( R  e.  V  ->  ( Base `  M )  =  ( Base `  ( R sSet  <. ( +g  `  ndx ) ,  ( .r `  R ) >. )
) )
149, 13eqtr4d 2223 . 2  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  M
) )
151, 14eqtrid 2232 1  |-  ( R  e.  V  ->  B  =  ( Base `  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158   _Vcvv 2749   <.cop 3607   ` cfv 5228  (class class class)co 5888   NNcn 8933   ndxcnx 12473   sSet csts 12474  Slot cslot 12475   Basecbs 12476   +g cplusg 12551   .rcmulr 12552  mulGrpcmgp 13172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-pre-ltirr 7937  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-ltxr 8011  df-inn 8934  df-2 8992  df-3 8993  df-ndx 12479  df-slot 12480  df-base 12482  df-sets 12483  df-plusg 12564  df-mulr 12565  df-mgp 13173
This theorem is referenced by:  mgptopng  13181  mgpress  13183  rngass  13191  rngcl  13196  isrngd  13205  rngpropd  13207  dfur2g  13214  srgcl  13222  srgass  13223  srgideu  13224  srgidcl  13228  srgidmlem  13230  issrgid  13233  srg1zr  13239  srgpcomp  13242  srgpcompp  13243  srgpcomppsc  13244  ringcl  13265  crngcom  13266  iscrng2  13267  ringass  13268  ringideu  13269  ringidcl  13272  ringidmlem  13274  isringid  13277  ringidss  13281  ringpropd  13290  crngpropd  13291  isringd  13293  iscrngd  13294  ring1  13309  oppr1g  13330  unitgrpbasd  13363  unitsubm  13367  rngidpropdg  13394  subrgsubm  13454  issubrg3  13467  rnglidlmmgm  13685  rnglidlmsgrp  13686  cnfldexp  13753
  Copyright terms: Public domain W3C validator