| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpbasg | Unicode version | ||
| Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mgpbas.1 |
|
| mgpbas.2 |
|
| Ref | Expression |
|---|---|
| mgpbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpbas.2 |
. 2
| |
| 2 | mulrslid 12964 |
. . . . 5
| |
| 3 | 2 | slotex 12859 |
. . . 4
|
| 4 | baseslid 12889 |
. . . . 5
| |
| 5 | basendxnplusgndx 12957 |
. . . . 5
| |
| 6 | plusgslid 12944 |
. . . . . 6
| |
| 7 | 6 | simpri 113 |
. . . . 5
|
| 8 | 4, 5, 7 | setsslnid 12884 |
. . . 4
|
| 9 | 3, 8 | mpdan 421 |
. . 3
|
| 10 | mgpbas.1 |
. . . . 5
| |
| 11 | eqid 2205 |
. . . . 5
| |
| 12 | 10, 11 | mgpvalg 13685 |
. . . 4
|
| 13 | 12 | fveq2d 5580 |
. . 3
|
| 14 | 9, 13 | eqtr4d 2241 |
. 2
|
| 15 | 1, 14 | eqtrid 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-plusg 12922 df-mulr 12923 df-mgp 13683 |
| This theorem is referenced by: mgptopng 13691 mgpress 13693 rngass 13701 rngcl 13706 isrngd 13715 rngpropd 13717 dfur2g 13724 srgcl 13732 srgass 13733 srgideu 13734 srgidcl 13738 srgidmlem 13740 issrgid 13743 srg1zr 13749 srgpcomp 13752 srgpcompp 13753 srgpcomppsc 13754 ringcl 13775 crngcom 13776 iscrng2 13777 ringass 13778 ringideu 13779 ringidcl 13782 ringidmlem 13784 isringid 13787 ringidss 13791 ringpropd 13800 crngpropd 13801 isringd 13803 iscrngd 13804 ring1 13821 oppr1g 13844 unitgrpbasd 13877 unitsubm 13881 rngidpropdg 13908 dfrhm2 13916 rhmmul 13926 isrhm2d 13927 rhmf1o 13930 subrgsubm 13996 issubrg3 14009 rhmpropd 14016 rnglidlmmgm 14258 rnglidlmsgrp 14259 cnfldexp 14339 expghmap 14369 lgseisenlem3 15549 lgseisenlem4 15550 |
| Copyright terms: Public domain | W3C validator |