| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mgpbasg | Unicode version | ||
| Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) | 
| Ref | Expression | 
|---|---|
| mgpbas.1 | 
 | 
| mgpbas.2 | 
 | 
| Ref | Expression | 
|---|---|
| mgpbasg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mgpbas.2 | 
. 2
 | |
| 2 | mulrslid 12809 | 
. . . . 5
 | |
| 3 | 2 | slotex 12705 | 
. . . 4
 | 
| 4 | baseslid 12735 | 
. . . . 5
 | |
| 5 | basendxnplusgndx 12802 | 
. . . . 5
 | |
| 6 | plusgslid 12790 | 
. . . . . 6
 | |
| 7 | 6 | simpri 113 | 
. . . . 5
 | 
| 8 | 4, 5, 7 | setsslnid 12730 | 
. . . 4
 | 
| 9 | 3, 8 | mpdan 421 | 
. . 3
 | 
| 10 | mgpbas.1 | 
. . . . 5
 | |
| 11 | eqid 2196 | 
. . . . 5
 | |
| 12 | 10, 11 | mgpvalg 13479 | 
. . . 4
 | 
| 13 | 12 | fveq2d 5562 | 
. . 3
 | 
| 14 | 9, 13 | eqtr4d 2232 | 
. 2
 | 
| 15 | 1, 14 | eqtrid 2241 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-mgp 13477 | 
| This theorem is referenced by: mgptopng 13485 mgpress 13487 rngass 13495 rngcl 13500 isrngd 13509 rngpropd 13511 dfur2g 13518 srgcl 13526 srgass 13527 srgideu 13528 srgidcl 13532 srgidmlem 13534 issrgid 13537 srg1zr 13543 srgpcomp 13546 srgpcompp 13547 srgpcomppsc 13548 ringcl 13569 crngcom 13570 iscrng2 13571 ringass 13572 ringideu 13573 ringidcl 13576 ringidmlem 13578 isringid 13581 ringidss 13585 ringpropd 13594 crngpropd 13595 isringd 13597 iscrngd 13598 ring1 13615 oppr1g 13638 unitgrpbasd 13671 unitsubm 13675 rngidpropdg 13702 dfrhm2 13710 rhmmul 13720 isrhm2d 13721 rhmf1o 13724 subrgsubm 13790 issubrg3 13803 rhmpropd 13810 rnglidlmmgm 14052 rnglidlmsgrp 14053 cnfldexp 14133 expghmap 14163 lgseisenlem3 15313 lgseisenlem4 15314 | 
| Copyright terms: Public domain | W3C validator |