| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpbasg | Unicode version | ||
| Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mgpbas.1 |
|
| mgpbas.2 |
|
| Ref | Expression |
|---|---|
| mgpbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpbas.2 |
. 2
| |
| 2 | mulrslid 13160 |
. . . . 5
| |
| 3 | 2 | slotex 13054 |
. . . 4
|
| 4 | baseslid 13085 |
. . . . 5
| |
| 5 | basendxnplusgndx 13153 |
. . . . 5
| |
| 6 | plusgslid 13140 |
. . . . . 6
| |
| 7 | 6 | simpri 113 |
. . . . 5
|
| 8 | 4, 5, 7 | setsslnid 13079 |
. . . 4
|
| 9 | 3, 8 | mpdan 421 |
. . 3
|
| 10 | mgpbas.1 |
. . . . 5
| |
| 11 | eqid 2229 |
. . . . 5
| |
| 12 | 10, 11 | mgpvalg 13881 |
. . . 4
|
| 13 | 12 | fveq2d 5630 |
. . 3
|
| 14 | 9, 13 | eqtr4d 2265 |
. 2
|
| 15 | 1, 14 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-plusg 13118 df-mulr 13119 df-mgp 13879 |
| This theorem is referenced by: mgptopng 13887 mgpress 13889 rngass 13897 rngcl 13902 isrngd 13911 rngpropd 13913 dfur2g 13920 srgcl 13928 srgass 13929 srgideu 13930 srgidcl 13934 srgidmlem 13936 issrgid 13939 srg1zr 13945 srgpcomp 13948 srgpcompp 13949 srgpcomppsc 13950 ringcl 13971 crngcom 13972 iscrng2 13973 ringass 13974 ringideu 13975 ringidcl 13978 ringidmlem 13980 isringid 13983 ringidss 13987 ringpropd 13996 crngpropd 13997 isringd 13999 iscrngd 14000 ring1 14017 oppr1g 14040 unitgrpbasd 14073 unitsubm 14077 rngidpropdg 14104 dfrhm2 14112 rhmmul 14122 isrhm2d 14123 rhmf1o 14126 subrgsubm 14192 issubrg3 14205 rhmpropd 14212 rnglidlmmgm 14454 rnglidlmsgrp 14455 cnfldexp 14535 expghmap 14565 lgseisenlem3 15745 lgseisenlem4 15746 |
| Copyright terms: Public domain | W3C validator |