| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpbasg | Unicode version | ||
| Description: Base set of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mgpbas.1 |
|
| mgpbas.2 |
|
| Ref | Expression |
|---|---|
| mgpbasg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpbas.2 |
. 2
| |
| 2 | mulrslid 12834 |
. . . . 5
| |
| 3 | 2 | slotex 12730 |
. . . 4
|
| 4 | baseslid 12760 |
. . . . 5
| |
| 5 | basendxnplusgndx 12827 |
. . . . 5
| |
| 6 | plusgslid 12815 |
. . . . . 6
| |
| 7 | 6 | simpri 113 |
. . . . 5
|
| 8 | 4, 5, 7 | setsslnid 12755 |
. . . 4
|
| 9 | 3, 8 | mpdan 421 |
. . 3
|
| 10 | mgpbas.1 |
. . . . 5
| |
| 11 | eqid 2196 |
. . . . 5
| |
| 12 | 10, 11 | mgpvalg 13555 |
. . . 4
|
| 13 | 12 | fveq2d 5565 |
. . 3
|
| 14 | 9, 13 | eqtr4d 2232 |
. 2
|
| 15 | 1, 14 | eqtrid 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-mgp 13553 |
| This theorem is referenced by: mgptopng 13561 mgpress 13563 rngass 13571 rngcl 13576 isrngd 13585 rngpropd 13587 dfur2g 13594 srgcl 13602 srgass 13603 srgideu 13604 srgidcl 13608 srgidmlem 13610 issrgid 13613 srg1zr 13619 srgpcomp 13622 srgpcompp 13623 srgpcomppsc 13624 ringcl 13645 crngcom 13646 iscrng2 13647 ringass 13648 ringideu 13649 ringidcl 13652 ringidmlem 13654 isringid 13657 ringidss 13661 ringpropd 13670 crngpropd 13671 isringd 13673 iscrngd 13674 ring1 13691 oppr1g 13714 unitgrpbasd 13747 unitsubm 13751 rngidpropdg 13778 dfrhm2 13786 rhmmul 13796 isrhm2d 13797 rhmf1o 13800 subrgsubm 13866 issubrg3 13879 rhmpropd 13886 rnglidlmmgm 14128 rnglidlmsgrp 14129 cnfldexp 14209 expghmap 14239 lgseisenlem3 15397 lgseisenlem4 15398 |
| Copyright terms: Public domain | W3C validator |