| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpplusgg | Unicode version | ||
| Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
| Ref | Expression |
|---|---|
| mgpval.1 |
|
| mgpval.2 |
|
| Ref | Expression |
|---|---|
| mgpplusgg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpval.2 |
. . . 4
| |
| 2 | mulrslid 12836 |
. . . . 5
| |
| 3 | 2 | slotex 12732 |
. . . 4
|
| 4 | 1, 3 | eqeltrid 2283 |
. . 3
|
| 5 | plusgslid 12817 |
. . . 4
| |
| 6 | 5 | setsslid 12756 |
. . 3
|
| 7 | 4, 6 | mpdan 421 |
. 2
|
| 8 | mgpval.1 |
. . . 4
| |
| 9 | 8, 1 | mgpvalg 13557 |
. . 3
|
| 10 | 9 | fveq2d 5565 |
. 2
|
| 11 | 7, 10 | eqtr4d 2232 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-inn 9010 df-2 9068 df-3 9069 df-ndx 12708 df-slot 12709 df-sets 12712 df-plusg 12795 df-mulr 12796 df-mgp 13555 |
| This theorem is referenced by: rngass 13573 rngcl 13578 isrngd 13587 rngpropd 13589 dfur2g 13596 srgcl 13604 srgass 13605 srgideu 13606 srgidmlem 13612 issrgid 13615 srg1zr 13621 srgpcomp 13624 srgpcompp 13625 ringcl 13647 crngcom 13648 iscrng2 13649 ringass 13650 ringideu 13651 ringidmlem 13656 isringid 13659 ringidss 13663 ringpropd 13672 crngpropd 13673 isringd 13675 iscrngd 13676 ring1 13693 oppr1g 13716 unitgrp 13750 unitlinv 13760 unitrinv 13761 rdivmuldivd 13778 rngidpropdg 13780 invrpropdg 13783 dfrhm2 13788 rhmmul 13798 isrhm2d 13799 rhmunitinv 13812 subrgugrp 13874 issubrg3 13881 rhmpropd 13888 rnglidlmmgm 14130 rnglidlmsgrp 14131 cnfldexp 14211 expghmap 14241 lgseisenlem3 15421 lgseisenlem4 15422 |
| Copyright terms: Public domain | W3C validator |