ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpplusgg Unicode version

Theorem mgpplusgg 13134
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.)
Hypotheses
Ref Expression
mgpval.1  |-  M  =  (mulGrp `  R )
mgpval.2  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
mgpplusgg  |-  ( R  e.  V  ->  .x.  =  ( +g  `  M ) )

Proof of Theorem mgpplusgg
StepHypRef Expression
1 mgpval.2 . . . 4  |-  .x.  =  ( .r `  R )
2 mulrslid 12590 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
32slotex 12489 . . . 4  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
41, 3eqeltrid 2264 . . 3  |-  ( R  e.  V  ->  .x.  e.  _V )
5 plusgslid 12571 . . . 4  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
65setsslid 12513 . . 3  |-  ( ( R  e.  V  /\  .x. 
e.  _V )  ->  .x.  =  ( +g  `  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
) )
74, 6mpdan 421 . 2  |-  ( R  e.  V  ->  .x.  =  ( +g  `  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
) )
8 mgpval.1 . . . 4  |-  M  =  (mulGrp `  R )
98, 1mgpvalg 13133 . . 3  |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. ) )
109fveq2d 5520 . 2  |-  ( R  e.  V  ->  ( +g  `  M )  =  ( +g  `  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
) )
117, 10eqtr4d 2213 1  |-  ( R  e.  V  ->  .x.  =  ( +g  `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   _Vcvv 2738   <.cop 3596   ` cfv 5217  (class class class)co 5875   ndxcnx 12459   sSet csts 12460   +g cplusg 12536   .rcmulr 12537  mulGrpcmgp 13130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-sets 12469  df-plusg 12549  df-mulr 12550  df-mgp 13131
This theorem is referenced by:  dfur2g  13145  srgcl  13153  srgass  13154  srgideu  13155  srgidmlem  13161  issrgid  13164  srg1zr  13170  srgpcomp  13173  srgpcompp  13174  ringcl  13196  crngcom  13197  iscrng2  13198  ringass  13199  ringideu  13200  ringidmlem  13205  isringid  13208  ringidss  13212  ringpropd  13217  crngpropd  13218  isringd  13220  iscrngd  13221  ring1  13236  oppr1g  13252  unitgrp  13285  unitlinv  13295  unitrinv  13296  rdivmuldivd  13313  rngidpropdg  13315  invrpropdg  13318  subrgugrp  13361  issubrg3  13368  cnfldexp  13474
  Copyright terms: Public domain W3C validator