Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mgpplusgg | Unicode version |
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.) |
Ref | Expression |
---|---|
mgpval.1 | mulGrp |
mgpval.2 |
Ref | Expression |
---|---|
mgpplusgg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpval.2 | . . . 4 | |
2 | mulrslid 12542 | . . . . 5 Slot | |
3 | 2 | slotex 12455 | . . . 4 |
4 | 1, 3 | eqeltrid 2262 | . . 3 |
5 | plusgslid 12525 | . . . 4 Slot | |
6 | 5 | setsslid 12478 | . . 3 sSet |
7 | 4, 6 | mpdan 421 | . 2 sSet |
8 | mgpval.1 | . . . 4 mulGrp | |
9 | 8, 1 | mgpvalg 12928 | . . 3 sSet |
10 | 9 | fveq2d 5511 | . 2 sSet |
11 | 7, 10 | eqtr4d 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 cvv 2735 cop 3592 cfv 5208 (class class class)co 5865 cnx 12425 sSet csts 12426 cplusg 12492 cmulr 12493 mulGrpcmgp 12925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-inn 8891 df-2 8949 df-3 8950 df-ndx 12431 df-slot 12432 df-sets 12435 df-plusg 12505 df-mulr 12506 df-mgp 12926 |
This theorem is referenced by: dfur2g 12938 srgcl 12946 srgass 12947 srgideu 12948 srgidmlem 12954 issrgid 12957 srg1zr 12963 srgpcomp 12966 srgpcompp 12967 |
Copyright terms: Public domain | W3C validator |