ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgpplusgg Unicode version

Theorem mgpplusgg 13556
Description: Value of the group operation of the multiplication group. (Contributed by Mario Carneiro, 21-Dec-2014.)
Hypotheses
Ref Expression
mgpval.1  |-  M  =  (mulGrp `  R )
mgpval.2  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
mgpplusgg  |-  ( R  e.  V  ->  .x.  =  ( +g  `  M ) )

Proof of Theorem mgpplusgg
StepHypRef Expression
1 mgpval.2 . . . 4  |-  .x.  =  ( .r `  R )
2 mulrslid 12834 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
32slotex 12730 . . . 4  |-  ( R  e.  V  ->  ( .r `  R )  e. 
_V )
41, 3eqeltrid 2283 . . 3  |-  ( R  e.  V  ->  .x.  e.  _V )
5 plusgslid 12815 . . . 4  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
65setsslid 12754 . . 3  |-  ( ( R  e.  V  /\  .x. 
e.  _V )  ->  .x.  =  ( +g  `  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
) )
74, 6mpdan 421 . 2  |-  ( R  e.  V  ->  .x.  =  ( +g  `  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
) )
8 mgpval.1 . . . 4  |-  M  =  (mulGrp `  R )
98, 1mgpvalg 13555 . . 3  |-  ( R  e.  V  ->  M  =  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. ) )
109fveq2d 5565 . 2  |-  ( R  e.  V  ->  ( +g  `  M )  =  ( +g  `  ( R sSet  <. ( +g  `  ndx ) ,  .x.  >. )
) )
117, 10eqtr4d 2232 1  |-  ( R  e.  V  ->  .x.  =  ( +g  `  M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   <.cop 3626   ` cfv 5259  (class class class)co 5925   ndxcnx 12700   sSet csts 12701   +g cplusg 12780   .rcmulr 12781  mulGrpcmgp 13552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-sets 12710  df-plusg 12793  df-mulr 12794  df-mgp 13553
This theorem is referenced by:  rngass  13571  rngcl  13576  isrngd  13585  rngpropd  13587  dfur2g  13594  srgcl  13602  srgass  13603  srgideu  13604  srgidmlem  13610  issrgid  13613  srg1zr  13619  srgpcomp  13622  srgpcompp  13623  ringcl  13645  crngcom  13646  iscrng2  13647  ringass  13648  ringideu  13649  ringidmlem  13654  isringid  13657  ringidss  13661  ringpropd  13670  crngpropd  13671  isringd  13673  iscrngd  13674  ring1  13691  oppr1g  13714  unitgrp  13748  unitlinv  13758  unitrinv  13759  rdivmuldivd  13776  rngidpropdg  13778  invrpropdg  13781  dfrhm2  13786  rhmmul  13796  isrhm2d  13797  rhmunitinv  13810  subrgugrp  13872  issubrg3  13879  rhmpropd  13886  rnglidlmmgm  14128  rnglidlmsgrp  14129  cnfldexp  14209  expghmap  14239  lgseisenlem3  15397  lgseisenlem4  15398
  Copyright terms: Public domain W3C validator