ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubgrpd2 GIF version

Theorem issubgrpd2 13601
Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
issubgrpd.s (𝜑𝑆 = (𝐼s 𝐷))
issubgrpd.z (𝜑0 = (0g𝐼))
issubgrpd.p (𝜑+ = (+g𝐼))
issubgrpd.ss (𝜑𝐷 ⊆ (Base‘𝐼))
issubgrpd.zcl (𝜑0𝐷)
issubgrpd.acl ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
issubgrpd.ncl ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
issubgrpd.g (𝜑𝐼 ∈ Grp)
Assertion
Ref Expression
issubgrpd2 (𝜑𝐷 ∈ (SubGrp‘𝐼))
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝐷,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦

Proof of Theorem issubgrpd2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 issubgrpd.ss . 2 (𝜑𝐷 ⊆ (Base‘𝐼))
2 issubgrpd.zcl . . 3 (𝜑0𝐷)
3 elex2 2790 . . 3 ( 0𝐷 → ∃𝑤 𝑤𝐷)
42, 3syl 14 . 2 (𝜑 → ∃𝑤 𝑤𝐷)
5 issubgrpd.p . . . . . . . 8 (𝜑+ = (+g𝐼))
65oveqd 5974 . . . . . . 7 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐼)𝑦))
76ad2antrr 488 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑦𝐷) → (𝑥 + 𝑦) = (𝑥(+g𝐼)𝑦))
8 issubgrpd.acl . . . . . . 7 ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
983expa 1206 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
107, 9eqeltrrd 2284 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑦𝐷) → (𝑥(+g𝐼)𝑦) ∈ 𝐷)
1110ralrimiva 2580 . . . 4 ((𝜑𝑥𝐷) → ∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷)
12 issubgrpd.ncl . . . 4 ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
1311, 12jca 306 . . 3 ((𝜑𝑥𝐷) → (∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷 ∧ ((invg𝐼)‘𝑥) ∈ 𝐷))
1413ralrimiva 2580 . 2 (𝜑 → ∀𝑥𝐷 (∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷 ∧ ((invg𝐼)‘𝑥) ∈ 𝐷))
15 issubgrpd.g . . 3 (𝜑𝐼 ∈ Grp)
16 eqid 2206 . . . 4 (Base‘𝐼) = (Base‘𝐼)
17 eqid 2206 . . . 4 (+g𝐼) = (+g𝐼)
18 eqid 2206 . . . 4 (invg𝐼) = (invg𝐼)
1916, 17, 18issubg2m 13600 . . 3 (𝐼 ∈ Grp → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ ∃𝑤 𝑤𝐷 ∧ ∀𝑥𝐷 (∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷 ∧ ((invg𝐼)‘𝑥) ∈ 𝐷))))
2015, 19syl 14 . 2 (𝜑 → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ ∃𝑤 𝑤𝐷 ∧ ∀𝑥𝐷 (∀𝑦𝐷 (𝑥(+g𝐼)𝑦) ∈ 𝐷 ∧ ((invg𝐼)‘𝑥) ∈ 𝐷))))
211, 4, 14, 20mpbir3and 1183 1 (𝜑𝐷 ∈ (SubGrp‘𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wex 1516  wcel 2177  wral 2485  wss 3170  cfv 5280  (class class class)co 5957  Basecbs 12907  s cress 12908  +gcplusg 12984  0gc0g 13163  Grpcgrp 13407  invgcminusg 13408  SubGrpcsubg 13578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-minusg 13411  df-subg 13581
This theorem is referenced by:  issubgrpd  13602  issubrgd  14289
  Copyright terms: Public domain W3C validator