| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubgrpd2 | GIF version | ||
| Description: Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| issubgrpd.s | ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) |
| issubgrpd.z | ⊢ (𝜑 → 0 = (0g‘𝐼)) |
| issubgrpd.p | ⊢ (𝜑 → + = (+g‘𝐼)) |
| issubgrpd.ss | ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) |
| issubgrpd.zcl | ⊢ (𝜑 → 0 ∈ 𝐷) |
| issubgrpd.acl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
| issubgrpd.ncl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) |
| issubgrpd.g | ⊢ (𝜑 → 𝐼 ∈ Grp) |
| Ref | Expression |
|---|---|
| issubgrpd2 | ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgrpd.ss | . 2 ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) | |
| 2 | issubgrpd.zcl | . . 3 ⊢ (𝜑 → 0 ∈ 𝐷) | |
| 3 | elex2 2787 | . . 3 ⊢ ( 0 ∈ 𝐷 → ∃𝑤 𝑤 ∈ 𝐷) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑤 𝑤 ∈ 𝐷) |
| 5 | issubgrpd.p | . . . . . . . 8 ⊢ (𝜑 → + = (+g‘𝐼)) | |
| 6 | 5 | oveqd 5951 | . . . . . . 7 ⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐼)𝑦)) |
| 7 | 6 | ad2antrr 488 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) = (𝑥(+g‘𝐼)𝑦)) |
| 8 | issubgrpd.acl | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) | |
| 9 | 8 | 3expa 1205 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
| 10 | 7, 9 | eqeltrrd 2282 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑦 ∈ 𝐷) → (𝑥(+g‘𝐼)𝑦) ∈ 𝐷) |
| 11 | 10 | ralrimiva 2578 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷) |
| 12 | issubgrpd.ncl | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) | |
| 13 | 11, 12 | jca 306 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)) |
| 14 | 13 | ralrimiva 2578 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)) |
| 15 | issubgrpd.g | . . 3 ⊢ (𝜑 → 𝐼 ∈ Grp) | |
| 16 | eqid 2204 | . . . 4 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
| 17 | eqid 2204 | . . . 4 ⊢ (+g‘𝐼) = (+g‘𝐼) | |
| 18 | eqid 2204 | . . . 4 ⊢ (invg‘𝐼) = (invg‘𝐼) | |
| 19 | 16, 17, 18 | issubg2m 13443 | . . 3 ⊢ (𝐼 ∈ Grp → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ ∃𝑤 𝑤 ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)))) |
| 20 | 15, 19 | syl 14 | . 2 ⊢ (𝜑 → (𝐷 ∈ (SubGrp‘𝐼) ↔ (𝐷 ⊆ (Base‘𝐼) ∧ ∃𝑤 𝑤 ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 (∀𝑦 ∈ 𝐷 (𝑥(+g‘𝐼)𝑦) ∈ 𝐷 ∧ ((invg‘𝐼)‘𝑥) ∈ 𝐷)))) |
| 21 | 1, 4, 14, 20 | mpbir3and 1182 | 1 ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∃wex 1514 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 ↾s cress 12752 +gcplusg 12828 0gc0g 13006 Grpcgrp 13250 invgcminusg 13251 SubGrpcsubg 13421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-iress 12759 df-plusg 12841 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-minusg 13254 df-subg 13424 |
| This theorem is referenced by: issubgrpd 13445 issubrgd 14132 |
| Copyright terms: Public domain | W3C validator |