ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issubm2 GIF version

Theorem issubm2 13501
Description: Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
issubm2.b 𝐵 = (Base‘𝑀)
issubm2.z 0 = (0g𝑀)
issubm2.h 𝐻 = (𝑀s 𝑆)
Assertion
Ref Expression
issubm2 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆𝐻 ∈ Mnd)))

Proof of Theorem issubm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubm2.b . . 3 𝐵 = (Base‘𝑀)
2 issubm2.z . . 3 0 = (0g𝑀)
3 eqid 2229 . . 3 (+g𝑀) = (+g𝑀)
41, 2, 3issubm 13500 . 2 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
5 issubm2.h . . . . . . 7 𝐻 = (𝑀s 𝑆)
61, 3, 2, 5issubmnd 13470 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
76bicomd 141 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆𝐻 ∈ Mnd))
873expb 1228 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑆𝐵0𝑆)) → (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆𝐻 ∈ Mnd))
98pm5.32da 452 . . 3 (𝑀 ∈ Mnd → (((𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ↔ ((𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd)))
10 df-3an 1004 . . 3 ((𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ↔ ((𝑆𝐵0𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
11 df-3an 1004 . . 3 ((𝑆𝐵0𝑆𝐻 ∈ Mnd) ↔ ((𝑆𝐵0𝑆) ∧ 𝐻 ∈ Mnd))
129, 10, 113bitr4g 223 . 2 (𝑀 ∈ Mnd → ((𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ↔ (𝑆𝐵0𝑆𝐻 ∈ Mnd)))
134, 12bitrd 188 1 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆𝐻 ∈ Mnd)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wss 3197  cfv 5317  (class class class)co 6000  Basecbs 13027  s cress 13028  +gcplusg 13105  0gc0g 13284  Mndcmnd 13444  SubMndcsubmnd 13486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-submnd 13488
This theorem is referenced by:  submmnd  13508  subsubm  13511  unitsubm  14077  subrgsubm  14192
  Copyright terms: Public domain W3C validator