![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > issubm2 | GIF version |
Description: Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
Ref | Expression |
---|---|
issubm2.b | β’ π΅ = (Baseβπ) |
issubm2.z | β’ 0 = (0gβπ) |
issubm2.h | β’ π» = (π βΎs π) |
Ref | Expression |
---|---|
issubm2 | β’ (π β Mnd β (π β (SubMndβπ) β (π β π΅ β§ 0 β π β§ π» β Mnd))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubm2.b | . . 3 β’ π΅ = (Baseβπ) | |
2 | issubm2.z | . . 3 β’ 0 = (0gβπ) | |
3 | eqid 2177 | . . 3 β’ (+gβπ) = (+gβπ) | |
4 | 1, 2, 3 | issubm 12868 | . 2 β’ (π β Mnd β (π β (SubMndβπ) β (π β π΅ β§ 0 β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π))) |
5 | issubm2.h | . . . . . . 7 β’ π» = (π βΎs π) | |
6 | 1, 3, 2, 5 | issubmnd 12848 | . . . . . 6 β’ ((π β Mnd β§ π β π΅ β§ 0 β π) β (π» β Mnd β βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π)) |
7 | 6 | bicomd 141 | . . . . 5 β’ ((π β Mnd β§ π β π΅ β§ 0 β π) β (βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π β π» β Mnd)) |
8 | 7 | 3expb 1204 | . . . 4 β’ ((π β Mnd β§ (π β π΅ β§ 0 β π)) β (βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π β π» β Mnd)) |
9 | 8 | pm5.32da 452 | . . 3 β’ (π β Mnd β (((π β π΅ β§ 0 β π) β§ βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π) β ((π β π΅ β§ 0 β π) β§ π» β Mnd))) |
10 | df-3an 980 | . . 3 β’ ((π β π΅ β§ 0 β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π) β ((π β π΅ β§ 0 β π) β§ βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π)) | |
11 | df-3an 980 | . . 3 β’ ((π β π΅ β§ 0 β π β§ π» β Mnd) β ((π β π΅ β§ 0 β π) β§ π» β Mnd)) | |
12 | 9, 10, 11 | 3bitr4g 223 | . 2 β’ (π β Mnd β ((π β π΅ β§ 0 β π β§ βπ₯ β π βπ¦ β π (π₯(+gβπ)π¦) β π) β (π β π΅ β§ 0 β π β§ π» β Mnd))) |
13 | 4, 12 | bitrd 188 | 1 β’ (π β Mnd β (π β (SubMndβπ) β (π β π΅ β§ 0 β π β§ π» β Mnd))) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β wb 105 β§ w3a 978 = wceq 1353 β wcel 2148 βwral 2455 β wss 3131 βcfv 5218 (class class class)co 5877 Basecbs 12464 βΎs cress 12465 +gcplusg 12538 0gc0g 12710 Mndcmnd 12822 SubMndcsubmnd 12855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-inn 8922 df-2 8980 df-ndx 12467 df-slot 12468 df-base 12470 df-sets 12471 df-iress 12472 df-plusg 12551 df-0g 12712 df-mgm 12780 df-sgrp 12813 df-mnd 12823 df-submnd 12857 |
This theorem is referenced by: unitsubm 13293 subrgsubm 13360 |
Copyright terms: Public domain | W3C validator |