| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > issubm2 | GIF version | ||
| Description: Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| issubm2.b | ⊢ 𝐵 = (Base‘𝑀) |
| issubm2.z | ⊢ 0 = (0g‘𝑀) |
| issubm2.h | ⊢ 𝐻 = (𝑀 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| issubm2 | ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubm2.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | issubm2.z | . . 3 ⊢ 0 = (0g‘𝑀) | |
| 3 | eqid 2206 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 4 | 1, 2, 3 | issubm 13389 | . 2 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
| 5 | issubm2.h | . . . . . . 7 ⊢ 𝐻 = (𝑀 ↾s 𝑆) | |
| 6 | 1, 3, 2, 5 | issubmnd 13359 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
| 7 | 6 | bicomd 141 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆 ↔ 𝐻 ∈ Mnd)) |
| 8 | 7 | 3expb 1207 | . . . 4 ⊢ ((𝑀 ∈ Mnd ∧ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆)) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆 ↔ 𝐻 ∈ Mnd)) |
| 9 | 8 | pm5.32da 452 | . . 3 ⊢ (𝑀 ∈ Mnd → (((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ↔ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd))) |
| 10 | df-3an 983 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ↔ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) | |
| 11 | df-3an 983 | . . 3 ⊢ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd) ↔ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆) ∧ 𝐻 ∈ Mnd)) | |
| 12 | 9, 10, 11 | 3bitr4g 223 | . 2 ⊢ (𝑀 ∈ Mnd → ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd))) |
| 13 | 4, 12 | bitrd 188 | 1 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 ‘cfv 5285 (class class class)co 5962 Basecbs 12917 ↾s cress 12918 +gcplusg 12994 0gc0g 13173 Mndcmnd 13333 SubMndcsubmnd 13375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fn 5288 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 df-2 9125 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-iress 12925 df-plusg 13007 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-submnd 13377 |
| This theorem is referenced by: submmnd 13397 subsubm 13400 unitsubm 13966 subrgsubm 14081 |
| Copyright terms: Public domain | W3C validator |