ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsncl Unicode version

Theorem lspsncl 13668
Description: The span of a singleton is a subspace (frequently used special case of lspcl 13667). (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lspval.v  |-  V  =  ( Base `  W
)
lspval.s  |-  S  =  ( LSubSp `  W )
lspval.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsncl  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  S
)

Proof of Theorem lspsncl
StepHypRef Expression
1 snssi 3750 . 2  |-  ( X  e.  V  ->  { X }  C_  V )
2 lspval.v . . 3  |-  V  =  ( Base `  W
)
3 lspval.s . . 3  |-  S  =  ( LSubSp `  W )
4 lspval.n . . 3  |-  N  =  ( LSpan `  W )
52, 3, 4lspcl 13667 . 2  |-  ( ( W  e.  LMod  /\  { X }  C_  V )  ->  ( N `  { X } )  e.  S )
61, 5sylan2 286 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363    e. wcel 2159    C_ wss 3143   {csn 3606   ` cfv 5230   Basecbs 12479   LModclmod 13563   LSubSpclss 13628   LSpanclspn 13662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-addcom 7928  ax-addass 7930  ax-i2m1 7933  ax-0lt1 7934  ax-0id 7936  ax-rnegex 7937  ax-pre-ltirr 7940  ax-pre-ltadd 7944
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-pnf 8011  df-mnf 8012  df-ltxr 8014  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-5 8998  df-6 8999  df-ndx 12482  df-slot 12483  df-base 12485  df-sets 12486  df-plusg 12567  df-mulr 12568  df-sca 12570  df-vsca 12571  df-0g 12728  df-mgm 12797  df-sgrp 12830  df-mnd 12843  df-grp 12913  df-minusg 12914  df-sbg 12915  df-mgp 13235  df-ur 13274  df-ring 13312  df-lmod 13565  df-lssm 13629  df-lsp 13663
This theorem is referenced by:  lspsnsubg  13672  lspsneli  13691  lspsn  13692  lspsnss2  13695
  Copyright terms: Public domain W3C validator